Works Cited In Book

  1. Hertz-Picciotto I, Delwiche L. The rise of autism and the role of age at diagnosis. Epidemiology. 2009; 20(1):84-90. Doi: 10.1097/EDE.0b013e3181902d15. (Link)
  2. Mangano JJ. A rise in the incidence of childhood cancer in the United States. Int J Health Serv. 1999; 29(2):393-408. Doi: 10.2190/TGRR-L4MV-JMXC-HJKP. (Link)
  3. Ng M, Fleming T, Robinson M, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2014; 384(9945):766-781. Doi: 10.1016/S0140-6736(14)60460-8. (Link)
  4. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet. 2016; 387(10027):1513-1530. Doi: 10.1016/S0140-6736(16)00618-8. (Link)
  5. Twenge JM. Time period and birth cohort differences in depressive symptoms in the U.S., 1982-2013. Social Indicators Research. 2015; 121(2):437-454. Doi: 10.1007/s11205-014-0647-1. (Link)
  6. Redd SC. Asthma in the United States: burden and current theories. Environ Health Perspect. 2002; 110(Suppl 4):557-560. Doi: 10.1289/ehp.02110s4557. (Link)
  7. von Hippel PT, Nahhas RW. Extending the history of child obesity in the United States: The Fels Longitudinal Study, birth years 1930-1993. Obesity (Silver Spring). 2013; 21(10):2153-2156. Doi: 10.1002/oby.20395. (Link)
  8. Menke A, Casagrande S, Geiss L, Cowie CC. Prevalence of and trends in diabetes among adults in the United States, 1988-2012. JAMA. 2015; 314(10):1021-1029. Doi: 10.1001/jama.2015.10029. (Link)
  9. Lim SS, Vos T, Flaxman AD, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012; 380(9859):2224-2260. Doi: 10.1016/S0140-6736(12)61766-8. (Link)
  10. Gracie DJ, Guthrie EA, Hamlin PJ, Ford AC. Bi-directionality of brain-gut interactions in patients with Inflammatory Bowel Disease. Gastroenterology. 2018; 154(6):1635-1646.e3. Doi: 10.1053/j.gastro.2018.01.027. (Link)
  11. Ashwood P, Krakowiak P, Hertz-Picciotto I, et al. Elevated plasma cytokines in autism spectrum disorders provide evidence of immune dysfunction and are associated with impaired behavioral outcome. Brain Behav Immune. 2011; 25(1):40-45. Doi: 10.1016/j.bbi.2010.08.003. (Link)
  12. Kern JK, Jones AM. Evidence of toxicity, oxidative stress, and neuronal insult in autism. J Toxicol Environ Heath B Crit Rev. 2006; 9(6):485-499. Doi: 10.1080/10937400600882079. (Link)
  13. Ashwood P, Wills S, Van de Water J. The immune response in autism: a new frontier of autism research. Journal of Leukocyte Biology. 2006; 80(1):1-15. Doi: 10.1189/jlb.1205707. (Link)
  14. Pardo CA, Vargas DL, Zimmerman AW. Immunity, neuroglia, and neuroinflammation in autism. Int Rev Psychiatry. 2005; 17(6):485-495. Doi: 10.1080/02646830500381930. (Link)
  15. Van Gent T, Heijnen CJ, Treffers PD. Autism and the immune system. J Child Psychol Psychiatry. 1997; 38(3):337-349. Doi: 10.1111/j.1469-7610.1997.tb01518.x. (Link)
  16.  Jyonouchi H, Sun S, Itokazu N. Innate immunity associated with inflammatory responses and cytokine production against common dietary proteins in patients with autism spectrum disorder. Neuropsychobiology. 2002; 46(2):76-84. Doi: 10.1159/000065416. (Link)
  17. Becker KG. Autism, asthma, inflammation, and the hygiene hypothesis. Med Hypotheses. 2007; 69(4):731-740. Doi: 10.1016/j.mehy.2007.02.019. (Link)
  18. Yorbik O, Sayal A, Akay C, Akbiyik DI, Sohmen T. Investigation of antioxidant enzymes in children with autistic disorder. Prostaglandins Leukot Essent Fatty Acids. 2002; 67(5):341-343. Doi: 10.1054/plef.2002.0439. (Link)
  19. Chauhan A, Chauhan V, Brown WT, Cohen I. Oxidative stress in autism: increased lipid peroxidation and reduced serum levels of ceruloplasmin and transferrin – the antioxidant proteins. Life Sciences. 2004; 75(21):2539-2549. Doi: 10.1016/j.lfs.2004.04.038. (Link)
  20. Rostène W, Kitabgi P, Parsadaniantz SM. Chemokines: a new class of neuromodulator? Nat Rev Neurosci. 2007; 8(11):895-903. Doi: 10.1038/nrn2255. (Link)
  21. Larson SJ. Behavioral and motivational effects of immune-system activation. J Gen Psychol. 2002; 129(4):401-414. Doi: 10.1080/00221300209602104. (Link)
  22. Chen L, Deng H, Cui H, et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2018; 9(6):7204-7218. Doi: 10.18632/oncotarget.23208. (Link)
  23. Skaper SD. The brain as a target for inflammatory processes and neuroprotective strategies. Ann N Y Acad Sci. 2007; 1122(1):23-34. Doi: 10.1196/annals.1403.002. (Link)
  24. Zipp F, Aktas O. The brain as a target of inflammation: common pathways link inflammatory and neurodegenerative diseases. Trends Neurosci. 2006; 29(9):518-527. Doi: 10.1016/j.tins.2006.07.006. (Link)
  25. Hornig M, Weissenböck H, Horscroft N, Lipkin WI. An infection-based model of neurodevelopmental damage. Proc Natl Acad Sci USA. 1999; 96(21):12102-12107. Doi: 10.1073/pnas.96.21.12102. (Link)
  26. Bauer S, Kerr BJ, Patterson PH. The neuropoietic cytokine family in development, plasticity, disease and injury. Nat Rev Neurosci. 2007; 8(3):221-232. Doi: 10.1038/nrn2054. (Link)
  27. Wei H, Zou H, Sheikh AM, et al. IL-6 is increased in the cerebellum of autistic brain and alters neural cell adhesion, migration and synaptic formation. J Neuroinflammation. 2011; 8:52. Doi: 10.1186/1742-2094-8-52. (Link)
  28. Jyonouchi H, Sun S, Le H. Proinflammatory and regulatory cytokine production associated with innate and adaptive immune responses in children with autism spectrum disorders and developmental regression. J Neuroimmunol. 2001; 120(1-2):170-179. Doi: 10.1016/S0165-5728(01)00421-0. (Link)
  29. Rothwell NJ, Luheshi G, Toulmond S. Cytokines and their receptors in the central nervous system: physiology, pharmacology, and pathology. Pharmacol Ther. 1996; 69(2):85-95. Doi: 10.1016/0163-7258(95)02033-0. (Link)
  30. Dame JB, Juul SE. The distribution of receptors for the pro-inflammatory cytokines interleukin (IL)-6 and IL-8 in the developing human fetus. Early Hum Dev. 2000; 58(1):25-39. Doi: 10.1016/S0378-3782(00)00064-5. (Link)
  31. Smith SE, Li J, Garbett K, Mirnics K, Patterson PH. Maternal immune activation alters fetal brain development through interleukin-6. J Neurosci. 2007; 27(40):10695-10702. Doi: 10.1523/JNEUROSCI.2178-07.2007. (Link)
  32. Nakashima K, Taga T. Mechanisms underlying cytokine-mediated cell-fate regulation in the nervous system. Mol Neurobiol. 2002; 25(3):233-244. Doi: 10.1385/MN:25:3:233. (Link)
  33. Taga T, Fukuda S. Role of IL-6 in the neural stem cell differentiation. Clin Rev Allergy Immunol. 2005; 28(3):249-256. Doi: 10.1385/CRIAI:28:3:249. (Link)
  34. Muñoz-Fernández MA, Fresno M. The role of tumour necrosis factor, interleukin 6, interferon-gamma and inducible nitric oxide synthase in the development and pathology of the nervous system. Prog Neurobiol. 1998; 56(3):307-340. Doi: 10.1016/S0301-0082(98)00045-8. (Link)
  35. Abbott NJ. Inflammatory mediators and modulation of blood-brain barrier permeability. Cell Mol Neurobiol. 2000; 20(2):131-147. Doi: 10.1023/A:1007074420772. (Link)
  36. Cunningham C, Wilcockson DC, Campion S, Lunnon K, Perry VH. Central and systemic endotoxin challenges exacerbate the local inflammatory response and increase neuronal death during chronic neurodegeneration. J Neurosci. 2005; 25(40):9275-9284. Doi: 10.1523/JNeurosci.2614-05.2005. (Link)
  37. Herbert MR, Anderson MP. An expanding spectrum of autism models from fixed development defects to reversible functional impairments. In: Zimmerman AW, editor. Autism: Current Theories and Evidence. Totowa, NJ: Humana Press; 2008. 429-463. (Link)
  38. Hagberg H, Mallard C. Effect of inflammation on central nervous system development and vulnerability. Curr Opin Neurol. 2005; 18(2):117-123. Doi: 10.1097/01.wco.0000162851.44897.8f. (Link)
  39. Comi AM, Zimmerman AW, Frye VH, Law PA, Peeden JN. Familial clustering of autoimmune disorders and evaluation of medical risk factors in autism. J Child Neurol. 1999; 14(6):388-394. Doi: 10.1177/088307389901400608. (Link)
  40. Sweeten TL, Bowyer SL, Posey DJ, Halberstadt GM, McDougle CJ. Increased prevalence of familial autoimmunity in probands with pervasive developmental disorders. Pediatrics. 2003; 112(5):e420. Doi: 10.1542/peds.112.5.e420. (Link)
  41. Singh VK. Phenotypic expression of autoimmune autistic disorder (AAD): a major subset of autism. Ann Clin Psychiatry. 2009; 21(3):148-161. (Link)
  42. Cohly HH, Panja A. Immunological findings in autism. Int Rev Neurobiol. 2005; 71:317-341. Doi: 10.1016/S0074-7742(05)71013-8. (Link)
  43. Licino J, Alvarado I, Wong ML. Autoimmunity in autism. Mol Psychiatry. 2002; 7(4):329. Doi: 10.1038/sj.mp.4001137. (Link)
  44. Warren RP, Margaretten NC, Pace NC, Foster A. Immune abnormalities in patients with autism. J Autism Dev Disord. 1986; 16(2):189-197. Doi: 10.1007/BF01531729. (Link)
  45. Warren RP, Foster A, Margaretten NC. Reduced natural killer cell activity in autism. J Am Acad Child Adolesc Psychiatry. 1987; 26(3):333-335. Doi: 10.1097/00004583-198705000-00008. (Link)
  46. Gupta S, Aggarwal S, Rashanravan B, Lee T. Th1- and Th2-like cytokines in CD4+ and CD8+ T cells in autism. J Neuroimmunol. 1998; 85(1):106-109. Doi: 10.1016/S0165-5728(98)00021-6. (Link)
  47. Stubbs EG, Crawford ML, Burger DR, Vandenbark AA. Depressed lymphocyte responsiveness in autistic children. J Autism Child Schizophr. 1977; 7(1):49-55. Doi: 10.1007/BF01531114. (Link)
  48. Schwartz M, Cohen IR. Autoimmunity can benefit self-maintenance. Immunol Today. 2000; 21(6):265-268. Doi: 10.1016/S0167-5699(00)01633-9. (Link)
  49. Cohen IR, Schwartz M. Autoimmune maintenance and neuroprotection of the central nervous system. J Neuroimmunol. 1999; 100(1-2):111-114. Doi: 10.1016/s0165-5728(99)00190-3. (Link)
  50. Romani L. Immunity to Candida albicans: Th1, Th2 cells and beyond. Curr Opin Microbiol. 1999; 2(4):363-367. Doi: 10.1016/S1369-5274(99)80064-2. (Link)
  51. Ishida H, Ota H, Yanagida H, Dobashi H. [An imbalance between Th1 and Th2-like cytokines in patients with autoimmune diseases–differential diagnosis between Th1 dominant autoimmune diseases and Th2 dominant autoimmune diseases]. [Article in Japanese]. Nihon Rinsho. 1997; 55(6):1438-1443. (Link)
  52. Peterson JD, Herzenberg LA, Vasquez K, Waltenbaugh C. Glutathione levels in antigen-presenting cells modulate Th1 versus Th2 response patterns. Proc Natl Acad Sci USA. 1998; 95(6):3071-3076. Doi: 10.1073/pnas.95.6.3071. (Link)
  53. Bach JF. Infections and autoimmune diseases. J Autoimmun. 2005; 25 Suppl: 74-80. Doi: 10.1016/j.jaut.2005.09.024. (Link)
  54. Mato JM, Corrales FJ, Lu SC, Avila MA. S-adenosylmethionine:  a control switch that regulates liver function. FASEB J. 2002; 16(1):15-26. Doi: 10.1096/fj.01-0401rev. (Link)
  55. Wong CC, Meaburn EL, Ronald A, et al. Methylomic analysis of monozygotic twins discordant for autism spectrum disorder and related behavioural traits. Mol Psychiatry. 2014; 19(4):495-503. Doi: 10.1038/mp.2013.41. (Link)
  56. James SJ, Cutler P, Melnyk S, et al. Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in children with autism. Am J Clin Nur. 2004; 80(6):1611-1617. Doi: 10.1093/ajcn/80.6.1611. (Link)
  57. Puig-Alcaraz C, Fuentes-Albero M, Calderón J, Garrote D, Cauli O. Increased homocysteine levels correlate with the communication deficit in children with autism spectrum disorder. Psychiatry Res. 2015; 229(3):1031-1037. Doi: 10.1016/j.psychres.2015.05.021. (Link)
  58. Rosenblatt DS, Watkins D. Inherited disorders of folate and cobalamin transport and metabolism. In: Scriver CR, Beaudet AL, Sly WS (eds). The Online Metabolic and Molecular Bases of Inherited Disease 8th Ed. McGraw-Hill. 2001; 3897-3933. (Link)
  59. Pérez-Miguelsanz J, Vallecillo N, Garrido F, et al. Betaine homocysteine S-methyltransferase emerges as a new player of the nuclear methionine cycle. Biochim Biophys Acta Mol Cell Res. 2017; 1864(7):1165-1182. Doi: 10.1016/j.bbamcr.2017.03.004. (Link)
  60. Miller CM, Szegedi SS, Garrow TA. Conformation-dependent inactivation of human betaine-homocysteine S-methyltransferase by hydrogen peroxide in vitro. Biochem J. 2005; 392(Pt 3):443-448. Doi: 10.1042/BJ20050356. (Link)
  61. Trivedi MS, Deth R. Redox-based epigenetic status in drug addiction: a potential contributor to gene priming and a mechanistic rationale for metabolic intervention. Front Neurosci. 2015; 8:444. Doi: 10.3389/fnins.2014.00444. (Link)
  62. Opladen T, Blau N, Ramaekers VT. Effect of antiepileptic drugs and reactive oxygen species on folate receptor 1 (FOLR1)-dependent 5-methyltetrahydrofolate transport. Mol Genet Metab. 2010; 101(1):48-54. Doi: 10.1016/j.ymgme.2010.05.006. (Link)
  63. Aylett SB, Neergheen V, Hargreaves IP, et al. Levels of 5-methyltetrahydrofolate and ascorbic acid in cerebrospinal fluid are correlated: implications for the accelerated degradation of folate by reactive oxygen species. Neurochem Int. 2013; 63(8):750-755. Doi: 10.1016/j.neuint.2013.10.002. (Link)
  64. Donkena KV, Young CYF, Tindall DJ. Oxidative stress and DNA methylation in prostate cancer. Obstet Gynecol Int. 2010; 2010:302051. Doi: 10.1155/2010/302051. (Link)
  65. Cremers CM, Jakob U. Oxidant sensing by reversible disulfide bond formation. J Biol Chem. 2013; 288(37):26489-26496. Doi: 10.1074/jbc.R113.462929. (Link)
  66. Hendren RL, James SJ, Widjaja F, et al. Randomized, placebo-controlled trial of methyl B12 for children with autism. J Child Adolesc Psychopharmacol. 2016; 26(9):774-783. Doi: 10.1089/cap.2015.0159. (Link)
  67. Vitvitsky V, Mosharov E, Tritt M, Ataullakhanov F, Banerjee R. Redox regulation of homocysteine-dependent glutathione synthesis. Redox Rep. 2003; 8(1):57-63. Doi: 10.1179/135100003125001260. (Link)
  68. Waly M, Olteanu H, Banerjee R, et al. Activation of methionine synthase by insulin-like growth factor-1 and dopamine: a target for neurodevelopmental toxins and thimerosal. Mol Psychiatry. 2004; 9(4):358-370. Doi: 10.1038/sj.mp.4001476. (Link)
  69. McCandless J. Children with Staving Brains: A Medical Treatment Guide for Autism Spectrum Disorder. 3rd ed. North Bergen, NJ: Bramble Books; 2007. (Link)
  70. Irvine RA, Lin IG, Hsieh CL. DNA methylation has a local effect on transcription and histone acetylation. Mol Cell Biol. 2002; 22(19):6689-6696. Doi: 10.1128/mcb.22.19.6689-6696.2002. (Link)
  71. Tsankova N, Renthal W, Kumar A, Nestler EJ. Epigenetic regulation in psychiatric disorders. Nat Rev Neurosci. 2007; 8(5):355-367. Doi: 10.1038/nrn2132. (Link)
  72. Rodenhiser D, Mann M. Epigenetics and human disease: translating basic biology into clinical applications. CMAJ. 2006; 174(3):341-348. Doi: 10.1503/cmaj.050774. (Link)
  73. Quig D. Cysteine metabolism and metal toxicity. Altern Med Rev. 1998; 3(4):262-270. (Link)
  74. Sheehan MC, Burke TA, Navas-Acien A, et al. Global methylmercury exposure from seafood consumption and risk of developmental neurotoxicity: a systematic review. Bull World Health Organ. 2014; 92(4):254F-269F. Doi: 10.2471/BLT.12.116152. (Link)
  75. Nunes E, Cavaco A, Carvalho C. Exposure assessment of pregnant Portuguese women to methylmercury through the ingestion of fish: cross-sectional survey and biomarker validation. J Toxicol Environ Health A. 2014; 77(1-3):133-142. Doi: 10.1080/15287394.2014.867200. (Link)
  76. Hodgson NW, Waly MI, Al-Farsi YM, et al. Decreased glutathione and elevated hair mercury levels are associated with nutritional deficiency-based autism in Oman. Exp Biol Med (Maywood). 2014; 239(6):697-706. Doi: 10.1177/1535370214527900. (Link)
  77. Han Y, Xi QQ, Dai W, et al. Abnormal transsulfuration metabolism and reduced antioxidant capacity in Chinese children with autism spectrum disorders. Int J Dev Neurosci. 2015; 46:27-32. Doi: 10.1016/j.ijdevneu.2015.06.006. (Link)
  78. Geier DA, Kern JK, Garver CR, et al. A prospective study of transsulfuration biomarkers in autistic disorders. Neurochem Res. 2009; 34(2):386-393. Doi: 10.1007/s11064-008-9782-x. (Link)
  79. Schulz JB, Lindenau J, Seyfried J, Dichgans J. Glutathione, oxidative stress and neurodegeneration. Eur J Biochem. 2000; 267(16):4904-4911. Doi: 10.1046/j.1432-1327.2000.01595.x. (Link)
  80. Gu F, Chauhan V, Chauhan A. Glutathione redox imbalance in brain disorders. Curr Opin Clin Nutr Metab Care. 2015; 18(1):89-95. Doi: 10.1097/MCO.0000000000000134. (Link)
  81. Mueller SG, Trabesinger AH, Boesiger P, Wieser HG. Brain glutathione levels in patients with epilepsy measured by in vivo (1)H-MRS. Neurology. 2001; 57(8):1422-1427. Doi: 10.1212/wnl.57.8.1422. (Link)
  82. Wu GY, Fang YZ, Yang S, Lupton JR, Turner ND. Glutathione metabolism and its implications for health. J Nutr. 2004; 134(3):489-492. Doi: 10.1093/jn/134.3.489. (Link)
  83. Bains JS, Shaw CA. Neurodegenerative disorder in humans: The role of glutathione in oxidative stress-mediated neuronal death. Brain Res Rev. 1997; 25(3):335-358. 10.1016/S0165-0173(97)00045-3. (Link)
  84. Shaw CA, Bains JS. Synergistic versus antagonistic actions of glutamate and glutathione: the role of excitotoxicity and oxidative stress in neuronal disease. Cell Med Biol (Noisy-le-grand). 2002; 48(2):127-136. (Link)
  85. Dringen R. Metabolism and functions of glutathione in brain. Prog Neurobiol. 2000; 62(6):649-671. Doi: 10.1016/S0301-0082(99)00060-X. (Link)
  86. Mårtensson J, Jain A, Meister A. Glutathione is required for intestinal function. Proc Natl Acad Sci U S A. 1990; 87(5):1715-1719. Doi: 10.1073/pnas.87.5.1715. (Link)
  87. Mårtensson J, Meister A. Mitochondrial damage in muscle occurs after marked depletion of glutathione and is prevented by giving glutathione monoester. Proc Natl Acad Sci U S A. 1989; 86(2):471-475. Doi: 10.1073/pnas.86.2.471. (Link)
  88. Kern JK, Geier DA, Adams JB, et al. A clinical trial of glutathione supplementation in autism spectrum disorders. Med Sci Monit. 2011; 17(12):CR677-CR682. Doi: 10.12659/msm.882125. (Link)
  89. Owen JB, Butterfield DA. Measurement of oxidized/reduced glutathione ratio. Methods Mol Biol. 2010; 648:269-277. Doi: 10.1007/978-1-60761-756-3_18. (Link)
  90. Dickinson DA, Forman HJ. Cellular glutathione and thiols metabolism. Biochem Pharmacol. 2002; 64(5-6):1019-1026. Doi: 10.1016/s0006-2952(02)01172-3. (Link)
  91. Parcell S. Sulfur in human nutrition and applications in medicine. Altern Med Rev. 2002; 7(1):22-44. (Link)
  92. Murch SH, MacDonald TT, Walker-Smith JA, et al. Disruption of sulphated glycosaminoglycans in intestinal inflammation. Lancet. 1993; 341(8847):711-714. Doi: 10.1016/0140-6736(93)90485-y. (Link)
  93. Bolt MJ, Liu W, Qiao G, et al. Critical role of vitamin D in sulfate homeostasis: regulation of the sodium-sulfate cotransporter by 1,25-dihydroxyvitamin D3. AJP Endocrinology and Metabolism. 2004; 287(4):E744-E749. Doi: 10.1152/ajpendo.00151.2004. (Link)
  94. Wilkinson LJ, Waring RH. Cysteine dioxygenase: modulation of expression in human cell lines by cytokines and control of sulphate production. Toxiol In Vitro. 2002; 16(4):481-483. Doi: 10.1016/s0887-2333(02)00031-0. (Link)
  95. Kalman DS, Feldman S, Scheinberg AR, Krieger DR, Bloomer RJ. Influence of methylsulfonylmethane on markers of exercise recovery and performance in healthy men: a pilot study. J Int Soc Sports Nutr. 2012; 9(1):46. Doi: 10.1186/1550-2783-9-46. (Link)
  96. Nakhostin-Roohi B, Barmaki S, Khoshkhahesh F, Bohlooli S. Effect of chronic supplementation with methylsulfonylmethane on oxidative stress following acute exercise in untrained healthy men. J Pharm Pharmacol. 2011; 63(10):1290-1294. Doi: 10.1111/j.2042-7158.2011.01314.x. (Link)
  97. Ahn H, Kim J, Lee MJ, et al. Methylsulfonylmethane inhibits NLRP3 inflammasome activation. Cytokine. 2015; 71(2):223-231. Doi: 10.1016/j.cyto.2014.11.001. (Link)
  98. Butawan M, Benjamin RL, Bloomer RJ. Methylsulfonylmethane: applications and safety of a novel dietary supplement. Nutrients. 2017; 9(3):290. Doi: 10.3390/nu9030290. (Link)
  99. Barrager E, Veltmann JR Jr, Schauss AG, Schiller RN. A multicentered, open-label trial on the safety and efficacy of methylsulfonylmethane in the treatment of seasonal allergic rhinitis. J Altern Complement Med. 2002; 8(2):167-173. Doi: 10.1089/107555302317371451. (Link)
  100. Adams JB, Audhya T, McDonough-Means S, et al. Nutritional and metabolic status of children with autism vs. neurotypical children, and the association with autism severity. Nutr Metab (Lond). 2011; 8:34. Doi: 10.1186/1743-7075-8-34. (Link)
  101. Geier DA, Kern JK, Garver CR, et al. Biomarkers of environmental toxicity and susceptibility in autism.  J Neuro Sci. 2009; 280(1-2):101-108. Doi: 10.1016/j.jns.2008.08.021. (Link)
  102. Bittker S. Antioxidant sulfur compounds: potential therapies for autism? J Autism. 2016; 3:3. Doi: 10.7243/2054-992X-3-3. (Link)
  103. Lonsdale D, Shamberger RJ, Audhya T. Treatment of autism spectrum children with thiamine tetrahydrofurfuryl disulfide: a pilot study. Neuroendocrinology Lett. 2002; 23(4):303-308. (Link)
  104. Lonsdale D. Thiamine tetrahydrofurfuryl disulfide: a little known therapeutic agent. Med Sci Monit. 2004; 10(9):RA199-RA203. (Link)
  105. Dimitri C, Effland A, Conklin N. The 20th century transformation of U.S. agriculture and farm policy. United States Department of Agriculture, Economic Research Service, Economic Information Bulletin Number 3. 2005. (Link)
  106. Pasricha NS, Aulakh MS. Twenty years of sulphur research and oilseed production in Punjab, India. Sulphur in Agriculture. 1991; 15:17-23. (Link)
  107. Aulakh MS. Crop responses to sulphur nutrition. In: Abril YP, Ahmed A, ed. Sulphur in plants. Dordrecht: Springer, 2003:341-358. (Link)
  108. Skwierawska M, Benedycka Z, Jankowski K, Skwierawski A. Sulphur as a fertiliser component determining crop yield and quality. J Elem. 2016; 21(2):609-623. Doi: 10.5601/jelem.2015.20.3.992. (Link)
  109. Place S, Kilcer T, Ketterings Q, Cherney D, Cherney J. Sulfur For Field Crops. Agronomy Fact Sheet Series no. 34. Ithaca, NY: Cornell University Cooperative Extension; 2007. (Link)
  110. Morgenstern RD, Harrington W, Shih JS, Bell ML, HEI Health Review Committee. Accountability analysis of title IV phase 2 of the 1990 Clean Air Act Amendments. Res Rep Health Eff Inst. 2012; 168:5-35. (Link)
  111. Riley NG, Zhao FJ, McGrath SP. Leaching losses of sulphur from different forms of sulphur fertilizers: a field lysimeter study. Soil Use Manag. 2002; 18(2):120-126. Doi: 10.1111/j.1475-2743.2002.tb00229.x. (Link)
  112. Jensen FP, Fenger J. The air quality in Danish urban areas. Environ Health Perspect. 1994; 102(Suppl 4):55-60. Doi: 10.1289/ehp.94102s455. (Link)
  113. Probst YC, Guan VX, Kent K. Dietary phytochemical intake from foods and health outcomes: a systematic review protocol and preliminary scoping. BMJ Open. 2017; 7(2):e013337. Doi: 10.1136/bmjopen-2016-013337. (Link)
  114. La Berge AF. How the ideology of low fat conquered America. J Hist Med Allied Sci. 2008; 63(2):139-177. Doi: 10.1093/jhmas/jrn001. (Link)
  115. Keys A. Prediction and possible prevention of coronary disease. Am J Public Health Nations Health. 1953; 43(11):1399-1407. Doi: 10.2105/ajph.43.11.1399. (Link)
  116. Briggs MA, Petersen KS, Kris-Etherton PM. Saturated fatty acids and cardiovascular disease: replacements for saturated fat to reduce cardiovascular risk. Healthcare (Basel). 2017; 5(2):29. Doi: 10.3390/healthcare5020029. (Link)
  117. Hu FB, Manson JE, Willett WC. Types of dietary fat and risk of coronary heart disease: a critical review. J Am Coll Nutr. 2001; 20(1):5-19. Doi: 10.1080/07315724.2001.10719008. (Link)
  118. Riccardi G, Giacco R, Rivellese AA. Dietary fat, insulin sensitivity and the metabolic syndrome. Clin Nutr. 2004; 23(4):447-456. Doi: 10.1016/j.clnu.2004.02.006. (Link)
  119. Koska J, Ozias MK, Deer J, et al. A human model of dietary saturated fatty acid induced insulin resistance. Metabolism. 2016; 65(11):1621-1628. Doi: 10.1016/j.metabol.2016.07.015. (Link)
  120. Sidossis LS, Stuart CA, Shulman GI, Lopaschuk GD, Wolfe RR. Glucose plus insulin regulate fat oxidation by controlling the rate of fatty acid entry into the mitochondria. J Clin Invest. 1996; 98(10):2244-2250. Doi: 10.1172/JCI119034. (Link)
  121. Harcombe Z, Baker JS, Cooper SM, et al. Evidence from randomised controlled trials did not support the introduction of dietary fat guidelines in 1977 and 1983: a systematic review and meta-analysis. Open Heart. 2015; 2(1):e000196. Doi: 10.1136/openhrt-2014-000196. (Link)
  122. Chowdhury R, Warnakula S, Kunutsor S, et al. Association of dietary, circulating, and supplement fatty acids with coronary risk: a systematic review and meta-analysis. Ann Intern Med. 2014; 160(6):398-406. Doi: 10.7326/M13-1788. (Link)
  123. Temple NJ. Fat, sugar, whole grains and heart disease: 50 years of confusion. Nutrients. 2018; 10(1):39. Doi: 10.3390/nu10010039. (Link)
  124. Virtanen JK, Mursu J, Virtanen HE, et al. Association of egg and cholesterol intakes with carotid intima-media thickness and risk of incident coronary artery disease according to apolipoprotein E phenotype in men: the Kuopio Ischaemic Heart Disease Risk Factor Study. Am J Clin Nutr. 2016; 103(3):895-901. Doi: 10.3945/ajcn.115.122317. (Link)
  125. Lecerf JM, de Lorgeril M. Dietary cholesterol: from physiology to cardiovascular risk. Br J Nutr. 2011; 106(1):6-14. Doi: 10.1017/S0007114511000237. (Link)
  126. Wang H, Steffen LM, Zhou X, Harnack L, Luepker RV. Consistency between increasing trends in added-sugar intake and body mass index among adults: The Minnesota Heart Survey, 1980-1982 to 2007-2009. Am J Public Health. 2013; 103(3):501-507. Doi: 10.2105/AJPH.2011.300562. (Link)
  127. Jarrell WM, Beverly RB. The dilution effect in plant nutrition studies. Advances in Agronomy. 1981; 34:197-224. Doi: 10.1016/S0065-2113(08)60887-1. (Link)
  128. Shankar AH, Prasad AS. Zinc and immune function: the biological basis of altered resistance to infection. Am J Clin Nutr. 1998; 68(2 Suppl):447S-463S. Doi: 10.1093/ajcn/68.2.447S. (Link)
  129. Sturniolo GC, Di Leo V, Ferronato A, D’Odorico A, D’Incà R. Zinc supplementation tightens “leaky gut” in Crohn’s disease. Inflammatory Bowel Diseases. 2001; 7(2):94-98. Doi: 10.1097/00054725-200105000-00003. (Link)
  130. Jing M, Rech L, Wu Y, et al. Effects of zinc deficiency and zinc supplementation on homocysteine levels and related enzyme expression in rats. J Trace Elem Med Biol. 2015; 30:77-82. Doi: 10.1016/j.jtemb.2014.10.013. (Link)
  131. Zhang H, Forman HJ, Choi J. γ-glutamyl transpeptidase in glutathione biosynthesis. Methods Enzymol. 2005; 401:468-483. Doi: 10.1016/S0076-6879(05)01028-1. (Link)
  132. Martin H, Uring-Lambert B, Adrian M, et al. Effects of long-term dietary intake of magnesium on oxidative stress, apoptosis and ageing in rat liver. Magnes Res. 2008; 21(2):124-130. Doi: 10.1684/mrh.2008.0139. (Link)
  133. Taylor CE.  A novel treatment for “morning sickness”: Nausea of pregnancy could be induced by excess sulfite which molybdenum can help alleviate. Med Hypotheses. 2016; 95:31-33. (Link)
  134. Scadding GK, Ayesh R, Brostoff J, et al. Poor sulphoxidation ability in patients with food sensitivity. BMJ. 1988; 297(6641):105-107. Doi: 10.1136/bmj.297.6641.105. (Link)
  135. O’Reilly BA, Waring RH. Enzyme and sulphur oxidation deficiencies in autistic children with known food/chemical intolerances. J Orthomol Med. 1993; 8(4):198-200. (Link)
  136. Pangborn J, Baker SM. Autism: Effective Biomedical Treatments. San Diego, CA: Autism Research Institute; 2005. (Link)
  137. Liska DJ. The detoxification enzyme systems. Altern Med Rev. 1998; 3(3):187-198. (Link)
  138. Alabdali A, Al-Ayadhi L, El-Ansary A. A key role for an impaired detoxification mechanism in the etiology and severity of autism spectrum disorders. Behav Brain Funct. 2014; 10:14. Doi: 10.1186/1744-9081-10-14. (Link)
  139. Naviaux RK. Metabolic features of the cell danger response. Mitochondrion. 2014; 16:7-17. Doi: 10.1016/j.mito.2013.08.006. (Link)
  140. Lein PJ, Yang D, Bachstetter AD, et al. Ontogenetic alterations in molecular and structural correlates of dendritic growth after development exposure to polychlorinated biphenyls. Environ Health Perspect. 2007; 115(4):556-563. Doi: 10.1289/ehp.9773. (Link)
  141. Grandjean P, Landrigan PJ. Neurobehavioural effects of developmental toxicity. Lancet Neurol. 2014; 13(3):330-338. Doi: 10.1016/S1474-4422(13)70278-3. (Link)
  142. Lyall K, Croen LA, Sjödin A, et al. Polychlorinated biphenyl and organochlorine pesticide concentrations in maternal mid-pregnancy serum samples: association with autism spectrum disorder and intellectual disability. Environ Health Perspect. 2017; 125(3):474-480. Doi: 10.1289/EHP277. (Link)
  143. Campbell A. Inflammation, neurodegenerative diseases, and environmental exposures. Ann N Y Acad Sci. 2004; 1035:117-132. Doi: 10.1196/annals.1332.008. (Link)
  144. Grandjean P, Landrigan PJ. Developmental neurotoxicity of industrial chemicals. Lancet. 2006; 368(9553):2167-2178. Doi: 10.1016/S0140-6736(06)69665-7. (Link)
  145. Bennett D, Bellinger DC, Birnbaum LS, et al. Project TENDR: targeting environmental neuro-developmental risks the TENDR consensus statement. Environ Health Perspect. 2016; 124(7):A118-A122. Doi: 10.1289/EHP358. (Link)
  146. Greger M, Stone G. How Not To Die. New York, New York: Flat Iron Books; 2015. (Link)
  147. Edelson SB, Cantor DS. Autism: xenobiotic influences. J Adv Med. 1999; 12(1):35-47. Doi: 10.1023/B:JAME.0000008713.66347.dc. (Link)
  148. Boggess A, Faber S, Kern J, Kingston HMS. Mean serum-level of common organic pollutants is predictive of behavioral severity in children with autism spectrum disorders. Sci Rep. 2016; 6:26185. Doi: 10.1038/srep26185. (Link)
  149. Jung CR, Lin YT, Hwang BF. Air pollution and newly diagnostic autism spectrum disorders: a population-based cohort study in Taiwan. PloS One. 2013; 8(9):e75510. Doi: 10.1371/journal.pone.0075510. (Link)
  150. Raz R, Roberts AL, Lyall K, et al. Autism spectrum disorder and particulate matter air pollution before, during, and after pregnancy: a nested case-control analysis within the Nurses’ Health Study II cohort. Environ Health Perspect. 2015; 123(3):264-270. Doi: 10.1289/ehp.1408133. (Link)
  151. Suades-González E, Gascon M, Guxens M, Sunyer J. Air pollution and neuropsychological development: a review of the latest evidence. Endocrinology. 2015; 156(10):3473-3482. Doi: 10.1210/en.2015-1403. (Link)
  152. Faber S, Zinn GM, Kern JC II, Kingston HM. The plasma zinc/serum copper ratio as a biomarker in children with autism spectrum disorders. Biomarkers. 2009; 14(3):171-180. Doi: 10.1080/13547500902783747. (Link)
  153. Bjorklund G. The role of zinc and copper in autism spectrum disorders. Acta Neurobiol Exp (Wars). 2013; 73(2):225-236. (Link)
  154. Feng W, Benz FW, Cai J, Pierce WM, Kang YJ. Metallothionein disulfides are present in metallothionein-overexpressing transgenic mouse heart and increase under conditions of oxidative stress. J Biol Chem. 2006; 281(2):681-687. Doi: 10.1074/jbc.M506956200. (Link)
  155. Shaw CA, Seneff S, Kette SD, et al. Aluminum-induced entropy in biological systems: implications for neurological disease. J Toxicol. 2014; 2014:491316. Doi: 10.1155/2014/491316. (Link)
  156. Kumar V, Bal A, Gill KD. Susceptibility of mitochondrial superoxide dismutase to aluminum induced oxidative damage. Toxicology. 2009; 255(3):117-123. Doi: 10.1016/j.tox.2008.10.009. (Link)
  157. Kumar A, Dogra S, Prakash A. Protective effect of curcumin (Curcuma longa), against aluminum toxicity: Possible behavioral and biochemical alterations in rats. Behav Brain Res. 2009; 205(2):384-390. Doi: 10.1016/j.bbr.2009.07.012. (Link)
  158. Murakami K, Yoshino M. Aluminum decreases the glutathione regeneration by the inhibition of NADP-isocitrate dehydrogenase in mitochondria. J Cell Biochem. 2004; 93(6):1267-1271. Doi: 10.1002/jcb.20261. (Link)
  159. Schubert J, Riley EJ, Tyler SA. Combined effects in toxicology – a rapid systematic testing procedure: cadmium, mercury, and lead. J Toxicol Environ Health. 1978; 4(5-6):763-776. Doi: 10.1080/15287397809529698. (Link)
  160. Yassa H. Autism: a form of lead and mercury toxicity. Environ Toxicol Pharmacol. 2014; 38(3):1016-1024. Doi: 10.1016/j.etap.2014.10.005. (Link)
  161. Shallenberger F. Bursting With Energy. 2nd ed. Laguna Beach, CA: Basic Health Publications; 2007. (Link)
  162. Carocci A, Rovito N, Sinicropi MS, Genchi G. Mercury toxicity and neurodegenerative effects. Rev Environ Contam Toxicol. 2014; 229:1-18. Doi: 10.1007/978-3-319-03777-6_1. (Link)
  163. Kim EH, Kim IK, Kwon JY, Kim SW, Park YW. The effect of fish consumption on blood mercury levels of pregnant women. Yonsei Med J. 2006; 47(5):626-633. Doi: 10.3349/ymj.2006.47.5.626. (Link)
  164. Harding G, Dalziel J, Vass P. Bioaccumulation of methylmercury within the marine food web of the outer Bay of Fundy, Gulf of Maine. PLoS One. 2018; 13(7):e0197220. Doi: 10.1371/journal.pone.0197220. (Link)
  165. Stejskal VD, Danersund A, Lindvall A, et al. Metal-specific lymphocytes: biomarkers of sensitivity in man. Neuro Endocrinol Lett. 1999; 20(5):289-298. (Link)
  166. Wimmerová S, Lancz K, Tihányi J, et al. Half-lives of serum PCB congener concentrations in environmentally exposed early adolescents. Chemosphere. 2011; 82(5):687-691. Doi: 10.1016/j.chemosphere.2010.10.099. (Link)
  167. Hageman KJ, Hafner WD, Campbell DH, et al. Variability in pesticide deposition and source contributions to snowpack in Western U.S. national parks. Environ Sci Technol. 2010; 44(12):4452-4458. Doi: 10.1021/es100290q. (Link)
  168. Roberts EM, English PB, Grether JK, et al. Maternal residence near agricultural pesticide applications and autism spectrum disorders among children in the California Central Valley. Environ Health Perspect. 2007; 115(10):1482-1489. Doi: 10.1289/ehp.10168. (Link)
  169. Eskenaze B, Marks AR, Bradman A, et al. Organophosphate pesticide exposure and neurodevelopment in young Mexican-American children. Environ Health Perspect. 2007; 115(5):792-798. Doi: 10.1289/ehp.9828. (Link)
  170. Samaco RC, Hogart A, LaSalle JM. Epigenetic overlap in autism-spectrum neurodevelopmental disorders: MECP2 deficiency causes reduced expression of UBE3A and GABRB3. Hum Mol Genet. 2005; 14(4):483-492. Doi: 10.1093/hmg/ddi045. (Link)
  171. Busi R, Vila-Aiub MM, Beckie HJ, et al. Herbicide-resistant weeds: from research and knowledge to future needs. Evol Appl. 2013; 6(8):1218-1221. Doi: 10.1111/eva.12098. (Link)
  172. Defarge N, Takács E, Lozano VL, et al. Co-Formulants in Glyphosate-based herbicides disrupt aromatase activity in human cells below toxic levels. Int J Environ Res Public Health. 2016; 13(3):E264. Doi: 10.3390/ijerph13030264. (Link)
  173. Clair E, Mesnage R, Travert C, Séralini GÉ. A Glyphosate-based herbicide induces necrosis and apoptosis in mature rate testicular cells in vitro, and testosterone decrease at lower levels. Toxicol In Vitro. 2012; 26(2):269-279. Doi: 10.1016/j.tiv.2011.12.009. (Link)
  174. Gasnier C, Dumont C, Benachour N, et al. Glyphosate-based herbicides are toxic and endocrine disruptors in human cell lines. Toxicology. 2009; 262(3):184-191. Doi: 10.1016/j.tox.2009.06.006. (Link)
  175. Zahid H, Simpson ER, Brown KA. Inflammation, dysregulated metabolism and aromatase in obesity and breast cancer. Curr Opin Pharmacol. 2016; 31:90-96. Doi: 10.1016/j.coph.2016.11.003. (Link)
  176. Maia Jr H, Haddad C, Coelho G, Casoy J. Role of inflammation and aromatase expression in the eutopic endometrium and its relationships with the development of endometriosis. Womens Health (Lond). 2012; 8(6):647-658. Doi: 10.2217/whe.12.52. (Link)
  177. Duncan KA, Saldanha C. Neuroinflammation induces glial aromatase expression in the uninjured songbird brain. J Neuroinflammation. 2011; 8:81. Doi: 10.1186/1742-2094-8-81. (Link)
  178. Richard S, Moslemi S, Sipahutar H, Benachour N, Séralini GE. Differential effects of glyphosate and roundup on human placental cells and aromatase. Environ Health Perspect. 2005; 113(6):716-720. Doi: 10.1289/ehp.7728. (Link)
  179. Séralini GÉ. Why glyphosate is not the issue with Roundup – A short overview of 30 years of our research. J Biol Phys Chem. 2015; 15. Doi: 10.4024/12se15r.jbpc.15.03. (Link)
  180. Guyton KZ, Loomis D, Grosse Y, et al. Carcinogenicity of tetrachlorvinphos, parathion, malathion, diazinon, and glyphosate. The Lancet Oncology. 2015; 16(5):490-491. Doi: 10.1016/S1470-2045(15)70134-8. (Link)
  181. Kim S, Han DH, Lyoo HS, et al. Exposure to environmental toxins in mothers of children with autism spectrum disorder. Psychiatry Investig. 2010; 7(2):122-127. Doi: 10.4306/pi.2010.7.2.122. (Link)
  182. Morello-Frosch R, Cushing LJ, Jesdale BM, et al. Environmental chemicals in an urban population of pregnant women and their newborns from San Francisco. Environ Sci Technol. 2016; 50(22):12464-12472. Doi: 10.1021/acs.est.6b03492. (Link)
  183. Rush T, Hjelmhaug J, Lobner D. Effects of chelators on mercury, iron, lead neurotoxicity in cortical culture. Neurotoxicology. 2009; 30(1):47-51. Doi: 10.1016/j.neuro.2008.10.009. (Link)
  184. Roth O, Beemelmanns A, Barribeau SM, Sadd BM. Recent advances in vertebrae and invertebrate transgenerational immunity in the light of ecology and evolution. Heredity (Edinb). 2018; 121(3):225-238. Doi: 10.1038/s41437-018-0101-2. (Link
  185. Lind MI, Spagopoulou F. Evolutionary consequences of epigenetic inheritance. Heredity. 2018; 121(3):205-209. Doi: 10.1038/s41437-018-0113-y. (Link)
  186. Bayarsaihan D. Epigenetic mechanisms in inflammation. J Dent Res. 2011; 90(1):9-17. Doi: 10.1177/0022034510378683. (Link)
  187. Christ A, Gunther P, Lauterbach MAR, et al. Western diet triggers NLRP3-dependent innate immune reprogramming. Cell. 2018; 172(1-2):162-175.e14. Doi: 10.1016/j.cell.2017.12.013. (Link)
  188. Andrews SV, Ellis SE, Bakulski KM, et al. Cross-tissue integration of genetic and epigenetic data offers insight into autism spectrum disorder. Nat Commun. 2017; 8(1):1011. Doi: 10.1038/s41467-017-00868-y. (Link)
  189. Nardone S, Elliott E. The interaction between the immune system and epigenetics in the etiology of autism spectrum disorders. Front Neurosci. 2016; 10:329. Doi: 10.3389/fnins.2016.00329. (Link)
  190. Atladóttir HO, Pedersen MG, Thorsen P, et al. Association of family history of autoimmune diseases an autism spectrum disorders. Pediatrics. 2009; 124(2):687-694. Doi: 10.1542/peds.2008-2445. (Link)
  191. Valicenti-McDermott MD, McVicar K, Cohen HJ, Wershil BK, Shinnar S. Gastrointestinal symptoms in children with an autism spectrum disorder and language regression. Pediatr Neurol. 2008; 39(6):392-398. Doi: 10.1016/j.pediatrneurol.2008.07.019. (Link)
  192. Yoo H. Genetics of autism spectrum disorder: current status and possible clinical applications. Exp Neurobiol. 2015; 24(4):257-272. Doi: 10.5607/en.2015.24.4.257. (Link)
  193. Frye RE, Rossignol DA. Mitochondrial dysfunction can connect the diverse medical symptoms associated with autism spectrum disorders. Pediatr Res. 2011; 69(5 Pt 2):41R-47R. Doi: 10.1203/PDR.0b013e318212f16b. (Link)
  194. Newsholme EA, Dimitriadis G. Integration of biochemical and physiologic effects of insulin on glucose metabolism. Exp Clin Endocrinol Diabetes. 2001; 109(Suppl 2):S122-S134. Doi: 10.1055/s-2001-18575. (Link)
  195. Herrero A, Barja G. Localization of the site of oxygen radical generation inside the complex I of heart and nonsynaptic brain mammalian mitochondria. J Bioenergy Biomembr. 2000; 32(6):609-615. Doi: 10.1023/A:1005626712319. (Link)
  196. Hirst J, King MS, Pryde KR. The production of reactive oxygen species by complex I. Biochem Soc Trans. 2008; 36(Pt 5):976-980. Doi: 10.1042/BST0360976. (Link)
  197. Weissman JR, Kelley RI, Bauman ML, et al. Mitochondrial disease in autism spectrum disorder patients: a cohort analysis. PloS ONE. 2008; 3(11):e3815. Doi: 10.1371/journal.pone.0003815. (Link)
  198. Tang G, Gutierrez Rios P, Kuo SH, et al. Mitochondrial abnormalities in temporal lobe of autistic brain. Neurobiol Dis. 2013; 54:349-361. Doi: 10.1016/j.nbd.2013.01.006. (Link)
  199. Rossignol DA, Frye RE. Mitochondrial dysfunction in autism spectrum disorders: a systematic review and meta-analysis. Mol Psychiatry. 2012; 17(3):290-314. Doi: 10.1038/mp.2010.136. (Link)
  200. Correia C, Coutinho AM, Diogo L, et al. Brief report. High frequency of biochemical markers for mitochondrial dysfunction in autism: no association with the mitochondrial aspartate/glutamate carrier SLC25A12 gene. J Autism Dev Disord. 2006; 36(8):1137-1140. Doi: 10.1007/s10803-006-0138-6. (Link)
  201. Griffiths KK, Levy RJ. Evidence of mitochondrial dysfunction in autism: biochemical links, genetic-based associations, and non-energy-related mechanisms. Oxid Med Cell Longev. 2017; 2017:4314025. Doi: 10.1155/2017/4314025. (Link)
  202. Clark-Taylor T, Clark-Taylor BE. Is autism a disorder of fatty acid metabolism? Possible dysfunction of mitochondrial beta-oxidation by long chain acyl-CoA dehydrogenase. Medical Hypotheses. 2004; 62(6):970-975. Doi: 10.1016/j.mehy.2004.01.011. (Link)
  203. Pastural E, Ritchie S, Lu Y, et al. Novel plasma phospholipids biomarkers of autism: mitochondria dysfunction as a putative causative mechanism. Prostaglandins Leukot Essent Fatty Acids. 2009; 81(4):253-264. Doi: 10.1016/j.plefa.2009.06.003. (Link)
  204. Jain A, Mårtensson J, Stole E, Auld PA, Meister A. Glutathione deficiency leads to mitochondrial damage in brain. Proc Natl Acad Sci USA. 1991; 88(5):1913-1917. Doi: 10.1073/pnas.88.5.1913. (Link)
  205. Poling JS, Frye RE, Shoffner J, Zimmerman AW. Developmental regression and mitochondrial dysfunction in a child with autism. J Child Neurol. 2006; 21(2):170-172. Doi: 10.1177/08830738060210021401. (Link)
  206. Fillano JJ, Goldenthal MJ, Rhodes CH, Marín-García J. Mitochondrial dysfunction in patients with hypotonia, epilepsy, autism, and developmental delay: HEADD syndrome. J Child Neurol. 2002; 17(6):435-439. Doi: 10.1177/088307380201700607. (Link)
  207. Oliveira G, Diogo L, Grazina M, et al. Mitochondrial dysfunction in autism spectrum disorders: a population-based study. Dev Med Child Neurol. 2005; 47(3):185-189. Doi: 10.1017/s0012162205000332. (Link)
  208. Giulivi C, Zhang YF, Omanska-Klusek A, et al. Mitochondrial dysfunction in autism. JAMA. 2010; 304(21):2389-2396. Doi: 10.1001/jama.2010.1706. (Link)
  209. Swerdlow RH. Treating neurodegeneration by modifying mitochondria: potential solution to a “complex” problem. Antioxid Redox Signal. 2007; 9(10):1591-1603. Doi: 10.1089/ars.2007.1676. (Link)
  210. Finsterer J. Mitochondriopathies. Eur J Neurol. 2004; 11(3):163-186. Doi: 10.1046/j.1351-5101.2003.00728.x. (Link)
  211. Dandona P, Aliada A, Bandyopadhyay A. Inflammation: the link between insulin resistance, obesity and diabetes. Trends Immunol. 2004; 25(1):4-7. Doi: 10.1016/j.it.2003.10.013. (Link)
  212. Engström G, Hedblad B, Stavenow L, et al. Inflammation-sensitive plasma proteins are associated with future weight gain. Diabetes. 2003; 52(8):2097-2101. Doi: 10.2337/diabetes.52.8.2097. (Link)
  213. Warburg O. On the origin of cancer cells. Science. 1956; 123(3191):309–314. Doi: 10.1126/science.123.3191.309. (Link)
  214. Rapp K, Schroeder J, Klenk J, et al. Fasting blood glucose and cancer risk in a cohort of more than 140,000 adults in Austria. Diabetologia. 2006; 49(5):945-952. Doi: 10.1007/s00125-006-0207-6. (Link)
  215. Richardson LC, Pollack LA. Therapy insight: influence of type 2 diabetes on the development, treatment, and outcomes of cancer. Nat Clin Pract Oncol. 2005; 2(1):48-53. Doi: 10.1038/ncponc0062. (Link)
  216. Klement RJ, Kämmerer U. Is there a role for carbohydrate restriction in the treatment and prevention of cancer? Nutr Metab (Lond). 2011; 8(75). Doi: 10.1186/1743-7075-8-75. (Link)
  217. Ye H, Adane B, Khan N, et al. Subversion of systemic glucose metabolism as a mechanism to support the growth of leukemia cells. Cancer Cell. 2018 34(4):659-673.e6 Doi: 10.1016/j.ccell.2018.08.016. (Link)
  218. Boag JM, Beesley AH, Firth MJ, et al. Altered glucose metabolism in childhood pre-B acute lymphoblastic leukaemia. Leukemia. 2006; 20:1731-1737. Doi: 10.1038/sj.leu.2404365. (Link)
  219. Chen WL, Wang JH, Zhao AH, et al. A distinct glucose metabolism signature of acute myeloid leukemia with prognostic value. Blood. 2014; 124(10):1645-1654. Doi: 10.1182/blood-2014-02-554204. Doi: 10.1182/blood-2014-02-554204. (Link)
  220. Jee SH, Ohrr H, Sull JW, et al. Fasting serum glucose level and cancer risk in Korean men and women. JAMA. 2005; 293(2):194-202. Doi: 10.1001/jama.293.2.194. (Link)
  221. Liu Y, Zhang Y, Mao X, et al. Palliative treatment efficacy of glucose inhibition combined with chemotherapy for non-small cell lung cancer with widespread bone and brain metastases: a case report. Biomed Rep. 2017; 7(6):553-557. Doi: 10.3892/br.2017.1008. (Link)
  222. Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Rev Cancer. 2004; 4(11):891-899. Doi: 10.1038/nrc1478. (Link)
  223. Sobal G, Menzel J, Sinzinger H. Why is glycated LDL more sensitive to oxidation than native LDL? A comparative study. Prostaglandins Leukot Essent Fatty Acids. 2000; 63(4):177-186. Doi: 10.1054/plef.2000.0204. (Link)
  224. Younis N, Sharma R, Soran H, et al. Glycation as an atherogenic modification of LDL. Curr Opin Lipidol. 2008; 19(4):378-384. Doi: 10.1097/MOL.0b013e328306a057. (Link)
  225. Meisinger C, Baumert J, Khuseyinova N, Loewel H, Koenig W. Plasma oxidized low-density lipoprotein, a strong predictor for acute coronary heart disease events in apparently healthy, middle-aged men from the general population. Circulation. 2005; 112(5):651-657. Doi: 10.1161/CIRCULATIONAHA.104.529297. (Link)
  226. Willerson JT, Ridker PM. Inflammation as a cardiovascular risk factor. Circulation. 2004; 109(21 Suppl 1):II2-II10. Doi: 10.1161/01.CIR.0000129535.04194.38. (Link)
  227. Sasso FC, Carbonara O, Nasti R, et al. Glucose metabolism and coronary heart disease in patients with normal glucose tolerance. JAMA. 2004; 291(15):1857-1863. Doi: 10.1001/jama.291.15.1857. (Link)
  228. Godsland IF, Crook D, Simpson R, et al. The effects of different formulations of oral contraceptive agents on lipid and carbohydrate metabolism. N Engl J Med. 1990; 323(20):1375-1381. Doi: 10.1056/NEJM199011153232003. (Link)
  229. Root-Bernstein R, Podufaly A, Dillon PF. Estradiol binds to insulin receptor decreasing insulin binding in vitro. Front Endocrinol (Lausanne). 2014; 5:118. Doi: 10.3389/fendo.2014.00118. (Link)
  230. Peppa M, Uribarri J, Vlassara H. Glucose, advanced glycation end products, and diabetes complications: what is new and what works. Clinical Diabetes. 2003; 21(4):186-187. Doi: 10.2337/diaclin.21.4.186. (Link)
  231. Bierhaus A, Stern DM, Nawroth PP. Rage in inflammation: a new therapeutic target? Curr Opin Investig Drugs. 2006; 7(11):985-991. (Link)
  232. Hudson BI, Lippman ME. Targeting RAGE signaling in inflammatory disease. Annu Rev Med. 2018; 69:349-364. Doi: 10.1146/annurev-med-041316-085215. (Link)
  233. Ali MK, Narayan KV, Tandon N. Diabetes & coronary heart disease: current perspectives. Indian J Med Res. 2010; 132(5):584-597. (Link)
  234. Hajar R. Diabetes as “coronary artery disease risk equivalent”: a historical perspective. Heart Views. 2017; 18(1):34-37. Doi: 10.4103/heartviews.heartviews_37_17. (Link)
  235. Juutilainen A, Kortelainen S, Lehto S, et al. Gender difference in the impact of type 2 diabetes on coronary heart disease risk. Diabetes Care. 2004; 27(12):2898-2904. Doi: 10.2337/diacare.27.12.2898. (Link)
  236. Chen R, Ovbiagele B, Feng W. Diabetes and stroke: epidemiology, pathophysiology, pharmaceuticals and outcomes. Am J Med Sci. 2016; 351(4):380-386. Doi: 10.1016/j.amjms.2016.01.011. (Link)
  237. Klement RJ. Beneficial effects of ketogenic diets for cancer patients: a realist review with focus on evidence and confirmation. Med Oncol. 2017; 34(8):132. Doi: 10.1007/s12032-017-0991-5. (Link)
  238. Allen BG, Bhatia SK, Anderson CM, et al. Ketogenic diets as an adjuvant cancer therapy: history and potential mechanism. Redox Biol. 2014; 2:963-970. Doi: 10.1016/j.redox.2014.08.002. (Link)
  239. Sieri S, Agnoli C, Pala V, et al. Dietary glycemic index, glycemic load, and cancer risk: results from the EPIC-Italy study. Sci Rep. 2017; 7(1):9757. Doi: 10.1038/s41598-017-09498-2. (Link)
  240. Levine ME, Suarez JA, Brandhorst S. Low protein intake is associated with a major reduction in IGF-1, cancer, and overall mortality in the 65 and younger by not older population. Cell Metab. 2014; 19(3):407-417. Doi: 10.1016/j.cmet.2014.02.006. (Link)
  241. Sherr CJ. Principles of tumor suppression. Cell. 2004; 116(2):235-246. Doi: 10.1016/S0092-8674(03)01075-4. (Link)
  242. Onodera, Y, Nam JM, Bissell MJ. Increased sugar uptake promotes oncogenesis via EPAC/RAP1 and O-GlcNAc pathways. J Clin Invest. 2014; 124(1):367-384. Doi: 10.1172/JCI63146. (Link)
  243. Dorak MT, Karpuzoglu E. Gender differences in cancer susceptibility: an inadequately addressed issue. Front Genet. 2012; 3:268. Doi: 10.3389/fgene.2012.00268. (Link)
  244. Kuper H, Adami HO, Trichopoulos D. Infections as a major preventable cause of human cancer. J Intern Med. 2000; 248(3):171-183. Doi: 10.1046/j.1365-2796.2000.00742.x. (Link)
  245. Wroblewski LE, Peek RM Jr, Wilson KT. Helicobacter pylori and gastric cancer: factors that modulate disease risk. Clin Microbiol Rev. 2010; 23(4):713-739. Doi: 10.1128/CMR.00011-10. (Link)
  246. Ringelhan M, McKeating JA, Protzer U. Viral hepatitis and liver cancer. Philos Trans R Soc Lond B Biol Sci. 2017; 372(1732):20160274. Doi: 10.1098/rstb.2016.0274. (Link)
  247. De Flora S, Bonanni P. The prevention of infection-associated cancers. Carcinogenesis. 2011; 32(6):787-795. Doi: 10.1093/carcin/bgr054. (Link)
  248. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002; 420(6917):860-867. Doi: 10.1038/nature01322. (Link)
  249. Anand P, Kunnumakkara AB, Sundaram C, et al. Cancer is a preventable disease that requires major lifestyle changes. Pharm Res. 2008; 25(9):2097-2116. Doi: 10.1007/s11095-008-9661-9. (Link)
  250. Lee S, Choe JW, Kim HK, Sung J. High-sensitivity C-reactive protein and cancer. J Epidemiol. 2011; 21(3):161-168. Doi: 10.2188/jea.JE20100128. (Link)
  251. Feinberg AP, Vogelstein B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature. 1983; 301(5895):89-92. Doi: 10.1038/301089a0. (Link)
  252. Ehrlich M. DNA hypomethylation in cancer cells. Epigenomics. 2009; 1(2):239-259. Doi: 10.2217/epi.09.33. (Link)
  253. Kulis M, Esteller M. DNA methylation and cancer. Adv Genet. 2010; 70:27-56. Doi: 10.1016/B978-0-12-380866-0.60002-2. (Link)
  254. Ehrlich M. DNA methylation in cancer: too much, but also too little. Oncogene. 2002; 21(35):5400-5413. Doi: 10.1038/sj.onc.1205651. (Link)
  255. Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinogenesis. 2010; 31(1):27-36. Doi: 10.1093/carcin/bgp220. (Link)
  256. Ehrlich M. Cancer-linked DNA hypomethylation and its relationship to hypermethylation. Curr Top Microbiol Immunol. 2006; 310:251-274. Doi: 10.1007/3-540-31181-5_12. (Link)
  257. Afanas’ev I. New nucleophilic mechanisms of ros-dependent epigenetic modifications: comparisons of aging and cancer. Aging Dis. 2014; 5(1):52-62. Doi: 10.14336/AD.2014.050052. (Link)
  258. Martens CR, Denman BA, Mazzo MR, et al. Chronic nicotinamide riboside supplementation is well-tolerated and elevates NAD+ in healthy middle-aged and older adults. Nat Commun. 2018; 9(1):1286. Doi: 10.1038/s41467-018-03421-7. (Link)
  259. Rhein V, Song X, Wiesner A, et al. Amyloid-β and tau synergistically impair the oxidative phosphorylation system in triple transgenic Alzheimer’s disease mice. Proc Natl Acad Sci U S A. 2009; 106(47):20057-20062. Doi: 10.1073/pnas.0905529106. (Link)
  260. Hsu M, Srinivas B, Kumar J, Subramanian R, Andersen J. Glutathione depletion resulting in selective mitochondrial complex I inhibition in dopaminergic cells is via an NO-mediated pathway not involving peroxynitrite: implications for Parkinson’s disease. J Neurochem. 2005; 92(5):1091-1103. Doi: 10.1111/j.1471-4159.2004.02929.x. (Link)
  261. Kussmaul L, Hirst J. The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria. Proc Natl Acad Sci USA. 2006; 103(20):7607-7612. Doi: 10.1073/pnas.0510977103. (Link)
  262. Essa MM, Subash S, Braidy N, et al. Role of NAD+, oxidative stress, and tryptophan metabolism in autism spectrum disorders. Int J Tryptophan Res. 2013; 6(Suppl 1):15-28. Doi: 10.4137/IJTR.S11355. (Link)
  263. Hayashida S, Arimoto A, Kuramoto Y, et al. Fasting promotes the expression of SIRT1, an NAD+-dependent protein deacetylase, via activation of PPARalpha in mice. Mol Cell Biochem. 2010; 339(1-2):285-292. Doi: 10.1007/s11010-010-0391-z. (Link)
  264. Rafaeloff-Phail R, Ding L, Conner L, et al. Biochemical regulation of mammalian AMP-activated protein kinase activity by NAD and NADH. J Biol Chem. 2005; 279(51):52934-52939. Doi: 10.1074/jbc.M409574200. (Link)
  265. Cantó C, Jiang LQ, Deshmukh AS, et al. Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab. 2010; 11(3):213-219. Doi: 10.1016/j.cmet.2010.02.006. (Link)
  266. Nerstedt A, Johansson A, Andersson CX, et al. AMP-activated protein kinase inhibits IL-6-stimulated inflammatory response in human liver cells by suppressing phosphorylation of signal transducer and activator of transcription 3 (STAT3). Diabetologia. 2010; 53(11):2406-2416. Doi: 10.1007/s00125-010-1856-z. (Link)
  267. Richter EA, Ruderman NB. AMPK and the biochemistry of exercise: implications for human health and disease. Biochem J. 2009; 418(2):261-275. Doi: 10.1042/BJ20082055. (Link)
  268. Kim T, Davis, Zhang AJ, He X, Mathews ST. Curcumin activates AMPK and suppresses gluconeogenic gene expression in hepatoma cells. Biochem Biophys Res Commun. 2009; 388(2):377-382. Doi: 10.1016/j.bbrc.2009.08.018. (Link)
  269. Longo VD, Mattson MP. Fasting: molecular mechanism and applications. Cell Metab. 2014; 19(2):181-192. Doi: 10.1016/j.cmet.2013.12.008. (Link)
  270. O’Flanagan CH, Smith LA, McDonell SB, Hursting SD. When less may be more: calorie restriction and response to cancer therapy. BMC Med. 2017; 15(1):106. Doi: 10.1186/s12916-017-0873-x. (Link)
  271. Lettieri-Barbato D, Aquilano K. Pushing the limits of cancer therapy: the nutrient game. Front Oncol. 2018; 8:148. Doi: 10.3389/fonc.2018.00148. (Link)
  272. Anton SD, Moehl K, Donahoo WT, et al. Flipping the metabolic switch: understanding and applying the health benefits of fasting. Obesity (Silver Spring). 2018; 26(2):254-268. Doi: 10.1002/oby.22065. (Link)
  273. Asher G, Sassone-Corsi P. Time for food: the intimate interplay between nutrition, metabolism, and the circadian clock. Cell. 2015; 161(1):84-92. Doi: 10.1016/j.cell.2015.03.015. (Link)
  274. Rothschild J, Hoddy KK, Jambazian P, Varady KA. Time-restricted feeding and risk of metabolic disease: a review of human and animal studies. Nutr Rev. 2014; 72(5):308-318. Doi: 10.1111/nure.12104. (Link)
  275. Longo VD, Panda S. Fasting, circadian rhythms, and time-restricted feeding in healthy lifespan. Cell Metab. 2016; 23(6):1048-1059. Doi: 10.1016/j.cmet.2016.06.001. (Link)
  276. Johnston JD. Physiological responses to food intake throughout the day. Nutr Res Rev. 2014; 27(1):107-118. Doi: 10.1017/S0954422414000055. (Link)
  277. Balakrishnan A, Tavakkolizadeh A, Rhoads DB. Circadian clock genes and implications for intestinal nutrient uptake. J Nutr Biochem. 2012; 23(5):417-422. Doi: 10.1016/j.jnutbio.2012.01.002. (Link)
  278. Kris-Etherton PM, Akabas SR, Bales CW, et al. The need to advance nutrition education in the training of health care professionals and recommended research to evaluate implementation and effectiveness. Am J Clin Nutr. 2014; 99(5):1153S-1166S. Doi: 10.3945/ajcn.113.073502. (Link)
  279. Vetter ML, Herring SJ, Sood M, Shah NR, Kalet AL. What do resident physicians know about nutrition? An evaluation of attitudes, self-perceived proficiency and knowledge. J Am Coll Nutr. 2008; 27(2):287-298. (Link)
  280. Asghar N, Naqvi SA, Hussain Z, et al. Compositional difference in antioxidant and antibacterial activity of all parts of the Carica papaya using different solvents. Chem Cent J. 2016; 10:5. Doi: 10.1186/s13065-016-0149-0. (Link)
  281. Meller W. Evolution Rx. New York, NY: Penguin Group; 2009. (Link)
  282. Rohrmann S, Linseisen J, Nöthlings U, et al. Meat and fish consumption and risk of pancreatic cancer: results from the European Prospective Investigation into Cancer and Nutrition. Int J Cancer. 2013; 132(3):617-624. Doi: 10.1002/ijc.27637. (Link)
  283. Nachman KE, Baron PA, Raber G, et al. Roxarsone, inorganic arsenic, and other arsenic species in chicken: a U.S.-based market basket sample. Environ Health Perspect. 2013; 121(7):818-824. Doi: 10.1289/ehp.1206245. (Link)
  284. Bridges FS. Relationship between dietary beef, fat, and pork and alcoholic cirrhosis. Int J Environ Res Public Health. 2009; 6(9):2417-2425. Doi: 10.3390/ijerph6092417. (Link)
  285. Dόrea JG. Vegetarian diets and exposure to organochlorine pollutants, lead, and mercury. Am J Clin Nutr. 2004; 80(1):237-238. Doi: 10.1093/ajcn/80.1.237. (Link)
  286. Choi HY, Park HC, Ha SK. Salt sensitivity and hypertension: a paradigm shift from kidney malfunction to vascular endothelial dysfunction. Electrolyte Blood Press. 2015; 13(1):7-16. Doi: 10.5049/EBP.2015.13.1.7. (Link)
  287. Foss JD, Kirabo A, Harrison DG. Do high-salt microenvironments drive hypertensive inflammation? Am J Physiol Regul Integr Comp Physiol. 2017; 312(1):R1-R4. Doi: 10.1152/ajpregu.00414.2016. (Link)
  288. Jablonski KL, Racine ML, Geolfos CJ, et al. Dietary sodium restriction reverses vascular endothelial dysfunction in middle-aged/older adults with moderately elevated systolic blood pressure. J Am Coll Cardiol. 2013; 61(3):335-343. Doi: 10.1016/j.jacc.2012.09.010. (Link)
  289. Grim CE, Campese VM, Ferrario CM, et al. G029: Salt sensitivity and ethnic variations: Renin-angiotensin and natriuretic hormones. Am J Hypertens. 2000; 13(S2):263A. Doi: 10.1016/S0895-7061(00)00990-0. (Link)
  290. Patterson E, Wall R, Fitzgerald GF, Ross RP, Stanton C. Health implications of high dietary omega-6 polyunsaturated fatty acids. J Nutr Metab. 2012; 2012:539426. Doi: 10.1155/2012/539426. (Link)
  291. Ottoboni F, Ottoboni A. Can attention deficit-hyperactivity disorder result from nutritional deficiency? J Am Phys & Surg. 2003; 8(2):58-60. (Link)
  292. Vaz JS, Kac G, Nardi AE, Hibbeln JR. Omega-6 fatty acids and greater likelihood of suicide risk and major depression in early pregnancy. J Affect Disord. 2014; 152-154:76-82. Doi: 10.1016/j.jad.2013.04.045. (Link)
  293. Yu M, Gao Q, Wang Y, et al. Unbalanced omega-6/omega-3 ratio in red meat products in China. J Biomed Res. 2013; 27(5):366-371. Doi: 10.7555/JBR.27.20130066. (Link)
  294. Komatsu W, Ishihara K, Murata M, Saito H, Shinohara K. Docosahexaenoic acid suppresses nitric oxide production and inducible nitric oxide synthase expression in interferon-gamma plus lipopolysaccharide-stimulated murine macrophages by inhibiting the oxidative stress. Free Radic Biol Med. 2003; 34(8):1006-1016. Doi: 10.1016/s0891-5849(03)00027-3. (Link)
  295. Jazayeri S, Tehrani-Doost M, Keshavarz SA, et al. Comparison of therapeutic effects of omega-3 fatty acid eicosapentaenoic acid and fluoxetine, separately and in combination, in major depressive disorder. Aust N Z J Psychiatry. 2008; 42(3):192-198. Doi: 10.1080/00048670701827275. (Link)
  296. Wainwright PE. Dietary essential fatty acids and brain function: a developmental perspective on mechanisms. Proc Nutr Soc. 2002; 61(1):61-69. Doi: 10.1079/PNS2001130. (Link)
  297. Maroon JC, Bost JW. Omega-3 fatty acids (fish oil) as an anti-inflammatory: an alternative to nonsteroidal anti-inflammatory drugs for discogenic pain. Surg Neurol. 2006; 65(4):326-331. Doi: 10.1016/j.surneu.2005.10.023. (Link)
  298. Li JJ, Huang CJ, Xie D. Anti-obesity effects of conjugated linoleic acid, docosahexaenoic acid, and eicosapentaenoic acid. Mol Nutr Food Res. 2008; 52(6):631-645. Doi: 10.1002/mnfr.200700399. (Link)
  299. Vancassel S, Durand G, Barthélémy C, et al. Plasma fatty acid levels in autistic children. Prostaglandins Leukot and Essent Fatty Acids. 2001; 65(1):1-7. Doi: 10.1054/plef.2001.0281. (Link)
  300. Amminger GP, Berger GE, Schäfer MR, et al. Omega-3 fatty acids supplementation in children with autism: a double-blind randomized, placebo-controlled pilot study. Biological Psychiatry. 2007; 61(4):551-553. Doi: 10.1016/j.biopsych.2006.05.2007. (Link)
  301. Meiri G, Bichovsky Y, Belmaker RH. Omega 3 fatty acid treatment in autism. J Child Adolsec Psychopharmacol. 2009; 19(4):449-451. Doi: 10.1089/cap.2008.0123. (Link)
  302. Leffa DT, Torres ILS, Rohde LA. A review of the role of inflammation in attention-deficit/hyperactivity disorder. Neuroimmunomodulation. 2018; 25(5-6):328-333. Doi: 10.1159/000489635. (Link)
  303. Cortese S, Angriman M, Comencini E, Vincenzi B, Maffeis C. Association between inflammatory cytokines and ADHD symptoms in children and adolescents with obesity: A pilot study. Psychiatry Res. 2019; 278:7-11. Doi: 10.1016/j.psychres.2019.05.030. (Link)
  304. Anand D, Colpo GD, Zeni G, Zeni CP, Teixeira AL. Attention-deficit/hyperactivity disorder and inflammation: what does current knowledge tell us? A systematic review. Front Psychiatry. 2017; 8:228. Doi: 10.3389/fpsyt.2017.00228. (Link)
  305. Darwish AH, Elgohary TM, Nosair NA. Serum interleukin-6 level in children with attention-deficit hyperactivity disorder (ADHD). J Child Neurol. 2019; 34(2):61-67. Doi: 10.1177/0883073818809831. (Link)
  306. Nasim S, Naeini AA, Najafi M, Ghazvini M, Hassanzadeh A. Relationship between antioxidant status and attention deficit hyperactivity disorder among children. Int J Prev Med. 2019; 10:41. Doi: 10.4103/ijpvm.IJPVM_80_18. (Link)
  307. Bélanger SA, Vanasse M, Spahis S, et al. Omega-3 fatty acid treatment of children with attention-deficit hyperactivity disorder: a randomized, double-blind, placebo-controlled study. Paediatr Child Health. 2009; 14(2):89-98. Doi: 10.1093/pch/14.2.89. (Link)
  308. Simopoulos AP. Evolutionary aspects of diet, the omega-6/omega-3 ratio and genetic variation: nutritional implications for chronic diseases. Biomed Pharmacother. 2006; 60(9):502-507. Doi: 10.1016/j.biopha.2006.07.080. (Link)
  309. Hites RA, Foran JA, Carpenter DO, et al. Global assessment of organic contaminants in farmed salmon. Science. 2004; 303(5655):226-229. Doi: 10.1126/science.1091447. (Link)
  310. Gewurtz SB, Bhavsar SP, Fletcher R. Influence of fish size and sex on mercury/PCB concentration: importance for fish consumption advisories. Environ Int. 2011; 37(2):425-434. Doi: 10.1016/j.envint.2010.11.005. (Link)
  311. Storelli MM, Giacominelli-Stuffler R, Marcotrigiano GO. Relationship between total mercury concentration and fish size in two pelagic fish species: implications for consumer health. J Food Prot. 2006; 69(6):1402-1405. Doi: 10.4315/0362-028x-69.6.1402. (Link)
  312. Halvorsen BL, Blomhoff R. Determination of lipid oxidation products in vegetable oils and marine omega-3 supplements. Food Nutr Res. 2011; 55. Doi: 10.3402/fnr.v55i0.5792. (Link)
  313. Deol P, Evans JR, Dhahbi J, et al. Soybean oil is more obesogenic and diabetogenic than coconut oil and fructose in mouse: potential role for the liver. PLoS One. 2015; 10(7):e0132672. Doi: 10.1371/journal.pone.0132672. (Link)
  314. Perumalla Venkata R, Subramanyam R. Evaluation of the deleterious health effects of consumption of repeatedly heated vegetable oil. Toxicol Rep. 2016; 3:636-643. Doi: 10.1016/j.toxrep.2016.08.003. (Link)
  315. Jaminet P, Jaminet SC. Perfect Health Diet. New York, New York: Scribner; 2012. (Link)
  316. Franks PW, Jablonski KA, Delahanty L, et al. The Pro12Ala variant at the peroxisome proliferator-activated receptor gamma gene and change in obesity-related traits in the Diabetes Prevention Program. Diabetologia. 2007; 50(12):2451-2460. Doi: 10.1007/s00125-007-0826-6. (Link)
  317. Martin H. Role of PPAR-gamma in inflammation. Prospects for therapeutic intervention by food components. Mutat Res. 2010; 690(1-2):57-63. Doi: 10.1016/j.mrfmmm.2009.09.009. (Link)
  318. Brown MJ, Ferruzzi MG, Nguyen, et al. Carotenoid bioavailability is higher from salads ingested with full-fat than with fat-reduced salad dressings as measured with electrochemical detection. Am J Clin Nutr. 2004; 80(2):396-403. Doi: 10.1093/ajcn/80.2.396. (Link)
  319. du Plessis LH, Marais EB, Mohammed F, Kotzé AF. Applications of lipid based formulation technologies in the delivery of biotechnology-based therapeutics. Curr Pharm Biotechnol. 2014; 15(7):659-672. Doi: 10.2174/1389201015666140804163143. (Link)
  320. Hennig B, Ettinger AS, Jandacek RJ, et al. Using nutrition for intervention and prevention against environmental chemical toxicity and associated diseases. Environ Health Perspect. 2007; 115(4):493-495. Doi: 10.1289/ehp.9549. (Link)
  321. Arguin H, Sánchez M, Bray GA, et al. Impact of adopting a vegan diet or an olestra supplementation on plasma organochlorine concentrations: results from two pilot studies. Br J Nutr. 2010; 103(10):1433-1441. Doi: 10.1017/S000711450999331X. (Link)
  322. Son TG, Camandola S, Mattson MP. Hormetic dietary phytochemicals. Neuromolecular Med. 2008; 10(4):236-246. Doi: 10.1007/s12017-008-8037-y. (Link)
  323. Velmurugan BK, Rathinasamy B, Lohanathan BP, Thiyagarajan V, Weng CF. Neuroprotective role of phytochemicals. Molecules. 2018; 23(10):2485. Doi: 10.3390/molecules23102485. (Link)
  324. Hussain T, Tan B, Yin Y, et al. Oxidative stress and inflammation: What polyphenols can do for us? Oxid Med Cell Longev. 2016; 2016:7432797. Doi: 10.1155/2016/7432797. (Link)
  325. Rasouli H, Farzaei MH, Khodarahmi R. Polyphenols and their benefits: a review. Inter J Food Prop. 2017; Sup2:1700-1741. Doi: 10.1080/10942912.2017.1354017. (Link)
  326. Ornish D, Weidner G, Fair WR, et al. Intensive lifestyle changes may affect the progression of prostate cancer. J Urol. 2005; 174(3):1065-1069. Doi: 10.1097/01.ju.0000169487.49018.73. (Link)
  327. Holtan SG, O’Conner HM, Fredericksen ZS, et al. Food-frequency questionnaire-based estimates of total antioxidant capacity and risk of non-Hodgkin lymphoma. Int Cancer. 2012; 131(5):1158-1168. Doi: 10.1002/ijc.26491. (Link)
  328. Esselstyn CB, Gendy G, Doyle J, Golubic M, Roizen MF. A way to reverse CAD? J Fam Pract. 2014; 63(7):356-364b. (Link)
  329. Tsai AC, Chang TL, Chi SH. Frequent consumption of vegetables predicts lower risk of depression in older Taiwanese—results of a prospective population-based study. Public Health Nutr. 2012; 15(6):1087-1092. Doi: 10.1017/S1368980011002977. (Link)
  330. Whitehead RD, Re D, Xiao D, Ozakinci G, Perrett DI. You are what you eat: within-subject increases in fruit and vegetable consumption confer beneficial skin-color changes. PLoS One. 2012; 7(3):e32988. Doi: 10.1371/journal.pone.0032988. (Link)
  331. Souto G, Donapetry C, Calviño J, Adeva MM. Metabolic acidosis-induced insulin resistance and cardiovascular risk. Metab Syndr Relat Disord. 2011; 9(4):247-253. Doi: 10.1089/met.2010.0108. (Link)
  332. Ying W, Han SK, Miller JW, Swanson RA. Acidosis potentiates oxidative neuronal death by multiple mechanisms. J Neurochem. 1999; 73(4):1549-1556. Doi: 10.1046/j.1471-4159.1999.0731549.x. (Link)
  333. Cohn JM, Kowey PR, Whelton PK, Prisant M. New guidelines for potassium replacement in clinical practice. A contemporary review by the National Council on Potassium in Clinical Practice. Arch Intern Med. 2000; 160(16):2429-2436. Doi: 10.1001/archinte.160.16.2429. (Link)
  334. Hunt BD, Cappuccio FP. Potassium intake and stroke risk: a review of the evidence and practical considerations for achieving a minimum target. Stroke. 2014; 45(5):1519-1522. Doi: 10.1161/STROKEAHA.113.004282. (Link)
  335. Chatterjee R, Hsin-Chieh Y, Edelman D, Brancati F. Potassium and risk of Type 2 diabetes. Expert Rev Endocrinol Metab. 2011; 6(5):665-672. Doi: 10.1586/eem.11.60. (Link)
  336. Sun K, Lu J, Jiang Y, et al. Low serum potassium level is associated with nonalcoholic fatty liver disease and its related metabolic disorders. Clin Endocrinol (Oxf). 2014; 80(3):348-355. Doi: 10.1111/cen.12168. (Link)
  337. Geibel JP. Role of potassium in acid secretion. World J Gastroenterol. 2005; 11(34):5259-5265. Doi: 10.3748/wjg.v11.i34.5259. (Link)
  338. McCabe RD, Bakarich MA, Srivastava K, Young DB. Potassium inhibits free radical formation. Hypertension. 1994; 24(1):77-82. Doi: 10.1161/01.hyp.24.1.77. (Link)
  339. Wingo CS, Greenlee MM. Progesterone: not just a sex hormone anymore? Kidney Int. 2011; 80(3):231-233. Doi: 10.1038/ki.2011.131. (Link)
  340. Tarozzi A, Morroni F, Merlicco A, et al. Neuroprotective effects of cyanidin 3-O-glucopyranoside on amyloid-beta (25-35) oligomer-induced toxicity. Neurosci Lett. 2010; 473(2):72-76. Doi: 10.1016/j.neulet.2010.02.006. (Link)
  341. Moskaug JØ, Carlsen H, Myhrstad MC, Blomhoff R. Polyphenols and glutathione synthesis regulation. Am J Clin Nutr. 2005; 81(1 Suppl):277S-283S. Doi: 10.1093/ajcn/81.1.277S. (Link)
  342. Meng X, Munishkina LA, Fink AL, Uversky VN. Effects of various flavonoids on the α-synuclein fibrillation process. Parkinsons Dis. 2010; 2010:650794. Doi: 10.4061/2010/650794. (Link)
  343. Zhang QS, Heng Y, Yuan YH, Chen NH. Pathological α-synuclein exacerbates the progression of Parkinson’s disease through microglial activation. Toxicol Lett. 2017; 265:30-37. Doi: 10.1016/j.toxlet.2016.11.002. (Link)
  344. Dias V, Junn E, Mouradian MM. The role of oxidative stress in Parkinson’s disease. J Parkinsons Dis. 2013; 3(4):461-491. Doi: 10.3233/JPD-130230. (Link)
  345. Majdalawieh AF, Carr RI. In vitro investigation of the potential immunomodulatory and anti-cancer activities of black pepper (Piper nigrum) and cardamom (Elettaria cardamomum). J Med Food. 2010; 13(2):371-381. Doi: 10.1089/jmf.2009.1131. (Link)
  346. Rao BN, Archana PR, Aithal BK, Rao BS. Protective effect of zingerone, a dietary compound against radiation induced genetic damage and apoptosis in human lymphocytes. Eur J Pharmacol. 2011; 657(1-3):59-66. Doi: 10.1016/j.ejphar.2011.02.002. (Link)
  347. Ozgoli G, Goli M, Moattar F. Comparison of effects of ginger, mefenamic acid, and ibuprofen on pains in women with primary dysmenorrhea. J Altern Complement Med. 2009; 15(2):129-132. Doi: 10.1089/acm.2008.0311. (Link)
  348. Gunawardena D, Shanmugam K, Low M, et al. Determination of anti-inflammatory activities of standardized preparations of plant- and mushroom-based foods. Eur J Nutr. 2014; 53(1):335-343. Doi: 10.1007/s00394-013-0531-9. (Link)
  349. Sökmen M, Serkedjieva J, Daferera D, et al. In vitro antioxidant, antimicrobial, and antiviral activities of the essential oil and various extracts from herbal parts and callus cultures of Origanum acutidens. J Agric Food Chem. 2004; 52(11):3309-3312. Doi: 10.1021/jf049859g. (Link)
  350. Carlsen MH, Halvorsen BL, Holte K, et al. The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutr J. 2010; 9:3. Doi: 10.1186/1475-2891-9-3. (Link)
  351. Tapsell LC, Hemphill I, Cobiac L, et al. Health benefits of herbs and spices: the past, the present, the future. Med J Aust. 2006; 185(4 Suppl):S4-S24. (Link)
  352. Alberti A, Pirrone P, Elia M, Waring RH, Romano C. Sulphation deficit in “low-functioning” autistic children: a pilot study. Biol Psychiatry. 1999; 46(3):420-424. Doi: 10.1016/s0006-3223(98)00337-0. (Link)
  353. Gunther T, Rebentisch E, Vormann J. Enhanced ototoxicity of salicylate by magnesium deficiency. Magnesium-Bulletin. 1989; 11:15-18. (Link)
  354. Moshfegh A, Goldman J, Cleveland L. 2005. What we eat in America, NHANES 2001-2002: usual nutrient intakes from food compared to dietary reference intakes. USDA, ARS; 2005. 1-56. (Link
  355. Sulaberidze G, Okujava M, Liluashvili K, Tughushi M, Bezarashvili S. Dietary fiber’s benefit for gallstone disease prevention during rapid weight loss in obese patients. Georgian Med News. 2014; (231):95-99. (Link)
  356. Schwesinger WH, Kurtin WE, Page CP, Stewart RM, Johnson R. Soluble dietary fiber protects against cholesterol gallstone formation. Am J Surg. 1999; 177(4):307-310. Doi: 10.1016/s0002-9610(99)00047-1. (Link)
  357. Venegas DP, De la Fuente MK, Landskron G, et al. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel disease. Front Immunol. 2019; 10:277. Doi: 10.3389/fimmu.2019.00277. (Link)
  358. Rodriguez-Leyva D, Weighell W, Edel AL, et al. Potent antihypertensive action of dietary flaxseed in hypertensive patients. Hypertension. 2013; 62(6):1081-1089. Doi: 10.1161/HYPERTENSIONAHA.113.02094. (Link)
  359. Thompson LU, Chen JM, Li T, Strasser-Weippl K, Goss PE. Dietary flaxseed alters tumor biological markers in postmenopausal breast cancer. Clin Cancer Res. 2005; 11(10):3828-3835. Doi: 10.1158/1078-0432.CCR-04-2326. (Link)
  360. Demark-Wahnefried W, Robertson CN, Walther PJ, et al. Pilot study to explore effects of low-fat, flaxseed-supplemented diet on proliferation of benign prostatic epithelium and prostate-specific antigen. Urology. 2004; 63(5):900-904. Doi: 10.1016/j.urology.2003.12.010. (Link)
  361. Nagarkatti P, Pandey R, Rieder SA, Hegde VL, Nagarkatti M. Cannabinoids as novel anti-inflammatory drugs. Future Med Chem. 2009; 1(7):1333-1349. Doi: 10.4155/fmc.09.93. (Link)
  362. Bruni N, Della Pepa C, Oliaro-Bosso S, et al. Cannabinoid delivery systems for pain and inflammation treatment. Molecules. 2018; 23(10):2478. Doi: 10.3390/molecules23102478. (Link)
  363. Hampson AJ, Grimaldi M, Lolic M, et al. Neuroprotective antioxidants from marijuana. Ann N Y Acad Sci. 2000; 899(1):274-282. Doi: 10.1111/j.1749-6632.2000.tb06193.x. (Link)
  364. Aran A, Cassuto H, Lubotzky A, Wattad N, Hazan E. Brief report: cannabidiol-rich cannabis in children with autism spectrum disorder and severe behavioral problems – a retrospective feasibility study. J Autism Dev Disord. 2019; 49(3):1284-1288. Doi: 10.1007/s10803-018-3808-2. (Link)
  365. Bar-Lev Schleider L. Mechoulam, Saban N, Meiri G, Novack V. Real life experience of medical cannabis treatment in autism: analysis of safety and efficacy. Sci Rep. 2019; 9(1):200. Doi: 10.1038/s41598-018-37570-y. (Link)
  366. Barchel D, Stolar O, De-Haan T, et al. Oral cannabidiol use in children with autism spectrum disorder to treat related symptoms and co-morbidities. Front Pharmacol. 2019; 9:1521. Doi: 10.3389/fphar.2018.01521. (Link)
  367. Massi P, Vaccani A, Ceruti S, et al. Antitumor effects of cannabidiol, a nonpsychoactive cannabinoid, on human glioma cell lines. J Pharmacol Exp Ther. 2004; 308(3):838-845. Doi: 10.1124/jpet.103.061002. (Link)
  368. Patay ÉB, Bencsik T, Papp N. Phytochemical overview and medicinal importance of Coffea species from the past until now. Asian Pac J Trop Med. 2016; 9(12):1127-1135. Doi: 10.1016/j.apjtm.2016.11.008. (Link)
  369. Eskelinen MH, Kivipelto M. Caffeine as a protective factor in dementia and Alzheimer’s disease. J Alzheimers Dis. 2010; 20(Suppl 1):S167-S174. Doi: 10.3233/JAD-2010-1404. (Link)
  370. Hu G, Bidel S, Jousilahti P, Antikainen R, Tuomilehto J. Coffee and tea consumption and the risk of Parkinson’s disease. Mov Disord. 2007; 22(15):2242-2248. Doi: 10.1002/mds.21706. (Link)
  371. Gapstur SM, Anderson RL, Campbell PT, et al. Associations of coffee drinking and cancer mortality in the cancer prevention study-II. Cancer Epidemiol Biomarkers Prev. 2017; 26(10):1477-1486. Doi: 10.1158/1055-9965.EPI-17-0353. (Link)
  372. Bidel S, Hu G, Qiao Q, et al. Coffee consumption and risk of total and cardiovascular mortality among patients with type 2 diabetes. Diabetologia. 2006; 46(11):2618-2626. Doi: 10.1007/s00125-006-0435-9. (Link)
  373. van Dam RM, Hu FB. Coffee consumption and risk of type 2 diabetes: a systematic review. JAMA. 2005; 294(1):97-104. Doi: 10.1001/jama.294.1.97. (Link)
  374. van Dieren S, Uiterwaal CS, van der Schouw YT, et al. Coffee and tea consumption and risk of type 2 diabetes. Diabetologia. 2009; 52(12):2561-2569. Doi: 10.1007/s00125-009-1516-3. (Link)
  375. Lai GY, Weinstein SJ, Albanes D, et al. The association of coffee intake with liver cancer incidence and chronic liver disease mortality in male smokers. Br J Cancer. 2013; 109(5):1344-1351. Doi: 10.1038/bjc.2013.405. (Link)
  376. Moro C, Palacios I, Lozano M, D’Arrigo M. Anti-inflammatory activity of methanolic extracts from edible mushrooms in LPS activated RAW 264.7 macrophages. Food Chemistry. 2012; 130(2):350-355. Doi: 10.1016/j.foodchem.2011.07.049. (Link)
  377. Jesenak M, Hrubisko M, Majtan J, Rennerova Z, Banovcin P. Anti-allergic effect of Pleuran (β-glucan from Pleurotus ostreatus) in children with recurrent respiratory tract infections. Phytother Res. 2014; 28(3):471-474. Doi: 10.1002/ptr.5020. (Link)
  378. Vinceti M, Mandrioli J, Borella P, et al. Selenium neurotoxicity in humans: bridging laboratory and epidemiologic studies. Toxicol Lett. 2014; 230(2):295-303. Doi: 10.1016/j.toxlet.2013.11.016. (Link)
  379. Chen M, Du ZY, Zheng X, et al. Use of curcumin in diagnosis, prevention, and treatment of Alzheimer’s disease. Neural Regen Res. 2018; 13(4):742-752. Doi: 10.4103/1673-5374.230303. (Link)
  380. Fadus MC, Lau C, Bikhchandani J, Lynch H. Curcumin: an age-old anti-inflammatory and anti-neoplastic agent. J Tradit Complement Med. 2017; 7(3):339-346. Doi: 10.1016/j.jtcme.2016.08.002. (Link)
  381. Hewlings SJ, Kalman DS. Curcumin: a review of its’ effects on human health. Foods. 2017; 6(10):92. Doi: 10.3390/foods6100092. (Link)
  382. Biswas SK, McClure D, Jimenez LA, Megson IL, Rahman I. Curcumin induces glutathione biosynthesis and inhibits NF-kappaB activation and interleukin-8 release in alveolar epithelial cells: mechanism of free radical scavenging activity. Antioxid Redox Signal. 2005; 7(1-2):32-41. Doi: 10.1089/ars.2005.7.32. (Link)
  383. Moghaddam NSA, Oskouie MN, Butler AE, et al. Hormetic effects of curcumin: what is the evidence? J Cell Physiol. 2019; 234(7):10060-10071. Doi: 10.1002/jcp.27880. (Link)
  384. Kunwar A, Sandur SK, Krishna M, Priyadarsini KI. Curcumin mediates time and concentration dependent regulation of redox homeostasis leading to cytotoxicity in macrophage cells. Eur J Pharmacol. 2009; 611(1-3):8-16. Doi: 10.1016/j.ejphar.2009.03.060. (Link)
  385. Marques FZ, Morris BJ. Commentary on resveratrol and hormesis: resveratrol—a hormetic marvel in waiting? Hum Exp Toxicol. 2010; 29(12):1026-1028. Doi: 10.1177/0960327110383640. (Link)
  386. Miller HE, Rigelhof F, Marquart L, Prakash A, Kanter M. Antioxidant content of whole grain breakfast cereals, fruits and vegetables. J Am Coll Nutr. 2000; 19(3 Suppl):312S-319S. Doi: 10.1080/07315724.2000.10718966. (Link)
  387. Yang W, Ma Y, Liu Y, et al. Association of intake of whole grains and dietary fiber with risk of hepatocellular carcinoma in US adults. JAMA Oncol. 2019; 5(6):879-886. Doi: 10.1001/jamaoncol.2018.7159. (Link)
  388. McAnulty LS, Nieman DC, Dumke CL, et al. Effect of blueberry ingestion on natural killer cell counts, oxidative stress, and inflammation prior to and after 2.5 h of running. Appl Physiol Nutr Metab. 2011; 36(6):976-984. Doi: 10.1139/h11-120. (Link)
  389. Whyte AR, Schafer G, Williams CM. The effect of cognitive demand on performance of an executive function task following wild blueberry supplementation in 7 to 10 years old children. Food Funct. 2017; 8(11):4129-4138. Doi: 10.1039/c7fo00832e. (Link)
  390. Yong LC, Petersen MR, Sigurdson AJ, Sampson LA, Ward EM. High dietary antioxidant intakes are associated with decreased chromosome translocation frequency in airline pilots. Am J Clin Nutr. 2009; 90(5):1402-1410. Doi: 10.3945/ajcn.2009.28207. (Link)
  391. Nielsen SS, Franklin GM, Longstreth WT Jr, Swanson PD, Checkoway H. Nicotine from edible Solanaceae and risk of Parkinson disease. Ann Neurol. 2013; 74(3):472-477. Doi: 10.1002/ana.23884. (Link)
  392. Kaspar KL, Park JS, Brown CR, et al. Pigmented potato consumption alters oxidative stress and inflammatory damage in men. J Nutr. 2011; 141(1):108-111. Doi: 10.3945/jn.110.128074. (Link)
  393. Xiao Z, Lester GE, Luo Y, Wang Q. Assessment of vitamin and carotenoid concentrations of emerging food products: edible microgreens. J Agric Food Chem. 2012; 60(31):7644-7651. Doi: 10.1021/jf300459b. (Link)
  394. Moriyama M, Oba K. Sprouts as antioxidant food resources and young people’s taste for them. Biofactors. 2004; 21(1-4):247-249. Doi: 10.1002/biof.552210147. (Link)
  395. Murray S, Lake BG, Gray S, et al. Effect of cruciferous vegetable consumption on heterocyclic aromatic amine metabolism in man. Carcinogenesis. 2001; 22(9):1413-1420. Doi: 10.1093/carcin/22.9.1413. (Link)
  396. Fahey JW, Zhang Y, Talalay P. Broccoli sprouts: an exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. Proc Natl Acad Sci U S A. 1997. 94(19):10367-10372. Doi: 10.1073/pnas.94.19.10367. (Link)
  397. Richman EL, Carroll PR, Chan JM. Vegetable and fruit intake after diagnosis and risk of prostate cancer progression. Int J Cancer. 2012; 131(1):201-210. Doi: 10.1002/ijc.26348. (Link)
  398. Boivin D, Lamy S, Lord-Dufour S, et al. Antiproliferative and antioxidant activities of common vegetables: a comparative study. Food Chem. 2009; 112(2):374-380. Doi: 10.1016/j.foodchem.2008.05.084. (Link)
  399. Su X, Jiang X, Meng L, et al. Anticancer activity of sulforaphane: the epigenetic mechanisms and the Nrf2 signaling pathway. Oxid Med Cell Longev. 2018; 2018:5438179. Doi: 10.1155/2018/5438179. (Link)
  400. Singh K, Connors SL, Macklin EA, et al. Sulforaphane treatment of autism spectrum disorders (ASD). PNAS. 2014; 111(43):15550-15555. Doi: 10.1073/pnas.1416940111. (Link)
  401. Houghton CA, Fassett RG, Coombes JS. Sulforaphane and other nutrigenomic Nrf2 activators: can the clinician’s expectation be matched by the reality? Oxid Med Cell Longev. 2016; 2016:7857186. Doi: 10.1155/2016/7857186. (Link)
  402. Nicastro HL, Ross SA, Milner JA. Garlic and onions: their cancer prevention properties. Cancer Prev Res (Phila). 2015; 8(3):181-189. Doi: 10.1158/1940-6207.CAPR-14-0172. (Link)
  403. Galeone C, Pelucchi C, Talamini R, et al. Onion and garlic intake and the odds of benign prostatic hyperplasia. Urology. 2007; 70(4):672-676. Doi: 10.1016/j.urology.2007.06.1099. (Link)
  404. Erdoğan MF. Thiocyanate overload and thyroid disease. Biofactors. 2003; 19(3-4):107-111. Doi: 10.1002/biof.5520190302. (Link)
  405. Barański M, Średnicka-Tober D, Volakakis N, et al. Higher antioxidant and lower cadmium concentrations and lower incidence of pesticide residues in organically grown crops: a systemic literature review and meta-analyses. Br J Nutr. 2014; 112(5):794-811. Doi: 10.1017/S0007114514001366. (Link)
  406. Hallmann E. The influence of organic and conventional cultivation systems on the nutritional value and content of bioactive compounds in selected tomato types. J Sci Food Agric. 2012; 92(14):2840-2848. Doi: 10.1002/jsfa.5617. (Link)
  407. Györéné KG, Varga A, Lugasi A. [A comparison of chemical composition and nutritional value of organically and conventionally grown plant derived foods]. [Article in Hungarian]. Orv Hetil. 2006; 147(43):2081-2090. (Link)
  408. Mousain-Bosc M, Roche M, Polge A, et al. Improvement of neurobehavioral disorders in children supplemented with magnesium-vitamin B6. II. Pervasive developmental disorder-autism. Magnes Res. 2006; 19(1):53-62. (Link)
  409. Martineau J, Barthelemy C, Garreau B, Lelord G. Vitamin B6, magnesium, and combined B6-Mg: therapeutic effects in childhood autism. Biol Psychiatry. 1985; 20(5):467-478. Doi: 10.1016/0006-3223(85)90019-8. (Link)
  410. Turnlund JR, Betschart AA, Liebman M, Kretsch MJ, Sauberlich HE. Vitamin B-6 depletion followed by repletion with animal- or plant-source diets and calcium and magnesium metabolism in young women. Am J Clin Nutr. 1992; 56(5):905-910. Doi: 10.1093/ajcn/56.5.905. (Link)
  411. Gröber U, Schmidt J, Kisters K. Magnesium in prevention and therapy. Nutrients. 2015; 7(9):8199-8226. Doi: 10.3390/nu7095388. (Link)
  412. El-Tanbouly DM, Abdelsalam RM, Attia AS, Abdel-Aziz MT. Pretreatment with magnesium ameliorates lipopolysaccharide-induced liver injury in mice. Pharmacol Rep. 2015; 67(5):914-920. Doi: 10.1016/j.pharep.2015.02.004. (Link)
  413. Bede O, Nagy D, Surányi A, et al. Effects of magnesium supplementation on the glutathione redox system in atopic asthmatic children. Inflamm Res. 2008; 57(6):279-286. Doi: 10.1007/s00011-007-7077-3. (Link)
  414. Nishio A, Ishiguro S, Miyao N. Specific change of histamine metabolism in acute magnesium-deficient young rats. Drug Nutr Interact. 1987; 5(2):89-96. (Link)
  415. Ko YH, Hong S, Pedersen PL. Chemical mechanism of ATP synthase. Magnesium plays a pivotal role in formation of the transition state where ATP is synthesized from ADP and inorganic phosphate. J Biol Chem. 1999; 274(41):28853-28856. Doi: 10.1074/jbc.274.41.28853. (Link)
  416. Swaminathan R. Magnesium metabolism and its disorders. Clin Biochem Rev. 2003; 24(2):47-66. (Link)
  417. Whang R, Whang DD, Ryan MP. Refractory potassium repletion. A consequence of magnesium deficiency. Arch Intern Med. 1992; 152(1):40-45. Doi: 10.1001/archinte.1992.00400130066006. (Link)
  418. Huang CL, Kuo E. Mechanism of hypokalemia in magnesium deficiency. J Am Soc Nephrol. 2007; 18(10):2649-2652. Doi: 10.1681/ASN.2007070792. (Link)
  419. Apell HJ, Hitzler T, Schreiber G. Modulation of the Na,K-ATPase by magnesium ions. Biochemistry. 2017; 56(7):1005-1016. Doi: 10.1021/acs.biochem.6b01243. (Link)
  420. Chandrasekaran NC, Sanchez WY, Mohammed YH, et al. Permeation of topically applied Magnesium ions through human skin is facilitated by hair follicles. Magnesium Research. 2016; 29(2):35-42. Doi: 10.1684/mrh.2016.0402. (Link)
  421. Engen DJ, McAllister SJ, Whipple MO, et al. Effects of transdermal magnesium chloride on quality of life for patients with fibromyalgia: a feasibility study. J Integr Med. 2015; 13(5):306-313. Doi: 10.1016/S2095-4964(15)60195-9. (Link)
  422. Bagis S, Karabiber M, As I, et al. Is magnesium citrate treatment effective on pain, clinical parameters and functional status in patients with fibromyalgia? Rhematol Int. 2013; 33(1):167-172. Doi: 10.1007/s00296-011-2334-8. (Link)
  423. Dai Q, Shu XO, Deng X, et al. Modifying effect of calcium/magnesium intake ratio and mortality: a population-based cohort study. BMJ Open. 2013; 3(2):e002111 Doi: 10.1136/bmjopen-2012-002111. (Link)
  424. Rimland B, Callaway E, Dreyfus P. The effect of high doses of vitamin B6 on autistic children: a double-blind crossover study. Am J Psychiatry. 1978; 135(4):472-475. Doi: 10.1176/ajp.135.4.472. (Link)
  425. Schaffer SW, Azuma J, Mozaffari M. Role of antioxidant activity of taurine in diabetes. Can J Physiol Pharmacol. 2009; 87(2):91-99. Doi: 10.1139/Y08-110. (Link)
  426. Heird W. Taurine in neonatal nutrition – revisited. Arch Dis Child Fetal Neonatal Ed. 2004; 89(4):F473-F474. Doi: 10.1136/adc.2004.055095. (Link)
  427. McCall KA, Huang CC, Fierke CA. Function and mechanism of zinc metalloenzymes. J Nutr. 2000; 130(5 Suppl):1437S-1446S. Doi: 10.1093/jn/130.5.1437S. (Link)
  428. Vallee BL, Falchuk KH. The biochemical basis of zinc physiology. Physiol Rev. 1993; 73(1):79-118. Doi: 10.1152/physrev.1993.73.1.79. (Link)
  429. Liuzzi JP, Guo L, Yoo C, Stewart TS. Zinc and autophagy. Biometals. 2014; 27(6):1087-1096. Doi: 10.1007/s10534-014-9773-0. (Link)
  430. Cario E, Jung S, Harder D’Heureuse J, et al. Effects of exogenous zinc supplementation on intestinal epithelial repair in vitro. Eur J Clin Invest. 2000; 30(5):419-428. Doi: 10.1046/j.1365-2362.2000.00618.x. (Link)
  431. Mahmood A, FitzGerald AJ, Marchbank T, et al. Zinc carnosine, a health food supplement that stabilizes small bowel integrity and stimulates gut repair processes. Gut. 2007; 56(2):168-175. Doi: 10.1136/gut.2006.099929. (Link)
  432. Paik HY, Joung H, Lee JY, et al. Serum extracellular superoxide dismutase activity as an indicator of zinc status in humans. Biol Trace Element Res. 1999; 69(1):45-57. Doi: 10.1007/BF02783914. (Link)
  433. Cope EC, Levenson CW. Role of zinc in the development and treatment of mood disorders. Curr Opin Clin Nutr Metab Care. 2010; 13(6):685-689. Doi: 10.1097/MCO.0b013e32833df61a. (Link)
  434. Cuzzocrea S, Reiter RJ. Pharmacological actions of melatonin in acute and chronic inflammation. Curr Top Med Chem. 2002; 2(2):153-165. Doi: 10.2174/1568026023394425. (Link)
  435. Mayo JC, Sainz RM, Antolín I, et al. Melatonin regulation of antioxidant enzyme gene expression. Cel Mol Life Sci. 2002; 59(10):1706-1713. Doi: 10.1007/PL00012498. (Link)
  436. Sikora E, Scapagnini G, Barbagallo M. Curcumin, inflammation, ageing and age-related diseases. Immun Ageing. 2010; 7(1):1. Doi: 10.1186/1742-4933-7-1. (Link)
  437. Larmonier CB, Uno JK, Lee KM, et al. Limited effects of dietary curcumin on Th-1 driven colitis in IL-10 deficient mice suggest an IL-10 dependent mechanism of protection. Am J Physiol Gastrointest Liver Physiol. 2008; 295(5):G1079-G1091. Doi: 10.1152/ajpgi.90365.2008. (Link)
  438. Bhandari R, Kuhad A. Neuropsychopharmacotherapeutic efficacy of curcumin in experimental paradigm of autism spectrum disorders. Life Sci. 2015; 141:156-169. Doi: 10.1016/j.lfs.2015.09.012. (Link)
  439. Hucklenbroich J, Klein R, Neumaier B, et al. Aromatic-turmerone induces neural stem cell proliferation in vitro and in vivo. Stem Cell Res & Ther. 2014; 5(4):100. Doi: 10.1186/scrt500. (Link)
  440. Shoba G, Joy D, Joseph T, et al. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med. 1998; 64(4):353-356. Doi: 10.1055/s-2006-957450. (Link)
  441. Dolske MC, Spollen J, McKay S, Lancashire E, Tolbert L. A preliminary trial of ascorbic acid as supplemental therapy for autism. Prog Neuro-Psychopharmacol Biol Psychiatry. 1993; 17(5):765-774. Doi: 10.1016/0278-5846(93)90058-Z. (Link)
  442. Johnston CS, Meyer CG, Srilakshmi JC. Vitamin C elevates red blood cell glutathione in healthy adults. Am J Clin Nutr. 1993; 58(1):103-105. Doi: 10.1093/ajcn/58.1.103. (Link)
  443. Johnston CS, Corte C, Swan PD. Marginal vitamin C status is associated with reduced fat oxidation during submaximal exercise in young adults. Nutr Metab (Lond). 2006; 3:35. Doi: 10.1186/1743-7075-3-35. (Link
  444. Combet E, Paterson S, Iijima K, et al. Fat transforms ascorbic acid from inhibiting to promoting acid-catalysed N-nitrosation. Gut. 2007; 56(12):1678-1684. Doi: 10.1136/gut.2007.128587. (Link)
  445. Chang W, Yang KD, Chuang H, Jan JT, Shaio MF. Glutamine protects activated T cells from apoptosis by up-regulating glutathione and Bcl-2 levels. Clin Immunol. 2002; 104(2):151-160. Doi: 10.1006/clim.2002.5257. (Link)
  446. Paintlia MK, Paintlia AS, Barbosa E, Singh I, Singh AK. N-acetylcysteine prevents endotoxin-induced degeneration of oligodendrocyte progenitors and hypomyelination in developing rat brain. J Neurosci Res. 2004; 78(3):347-361. Doi: 10.1002/jnr.20261. (Link)
  447. Dvořáková M, Sivoňová M, Trebatická J, et al. The effect of polyphenolic extract from pine bark, Pycnogenol, on the level of glutathione in children suffering from attention deficit hyperactivity disorder (ADHD). Redo Rep. 2006; 11(4):163-172. Doi: 10.1179/135100006X116664. (Link)
  448. Siniscalco D, Bradstreet JJ, Sych N, Antonucci N. Mesenchymal stem cells in treating autism: novel insights. World J Stem Cells. 2014; 6(2):173-178. Doi: 10.4252/wjsc.v6.i2.173. (Link)
  449. Ichim TE, Solano F, Glenn E, et al. Stem cell therapy for autism. J Transl Med. 2007; 5:30. Doi: 10.1186/1479-5876-5-30. (Link)
  450. Lv YT, Zhang Y, Liu M, et al. Transplantation of human cord blood mononuclear cells and umbilical cord-derived mesenchymal stem cells in autism. J Transl Med. 2013; 11:196. Doi: 10.1186/1479-5876-11-196. (Link
  451. Magnúsdottír S, Ravcheev D, de Crécy-Lagard V, Thiele I. Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes. Front Genet. 2015; 6:148. Doi: 10.3389/fgene.2015.00148. (Link)
  452. Said HM. Recent advances in transport of water-soluble vitamins in organs or the digestive system: a focus on the colon and the pancreas. Am J Physiol Gastrointest Liver Physiol. 2013; 305(9):G601-G610. Doi: 10.1152/ajpgi.00231.2013. (Link)
  453. Sheih YH, Chiang BL, Wang LH, Liao CK, Gill HS. Systemic immunity-enhancing effects in healthy subjects following dietary consumption of the lactic acid bacterium Lactobacillus rhamnosus HN001. J Am Coll Nutr. 2001; 20(Suppl 2):149-156. Doi: 10.1080/07315724.2001.10719027. (Link)
  454. Monachese M, Burton JP, Reid G. Bioremediation and tolerance of humans to heavy metals through microbial processes: a potential role for probiotics? Appl Environ Microbiol. 2012; 78(18):6397-6404. Doi: 10.1128/AEM.01665-12. (Link)
  455. Zaffanello M, Zamboni G, Fontana E, Zoccante L, Tatὁ L. A case of partial biotinidase deficiency associated with autism. Neuropsychol Dev Cogn Sect C Child Neuropsychol. 2003; 9(3):184-188. Doi: 10.1076/chin.9.3.184.16457. (Link)
  456. Khanna S, Atalay M, Laaksonen DE, et al. Alpha-lipoic acid supplementation: tissue glutathione homeostasis at rest and after exercise. J Appl Physiol. 1999; 86(4):1191-1196. Doi: 10.1152/jappl.1999.86.4.1191. (Link)
  457. Sen CK. Glutathione homeostasis in response to exercise training and nutritional supplements. Mol Cell Biochem. 1999; 196(1-2):31-42. Doi: 10.1023/A:1006910011048. (Link)
  458. Mardinoglu A, Shoaie S, Bergentall M, et al. The gut microbiota modulates host amino acid and glutathione metabolism in mice. Mol Syst Biol. 2015; 11(10):834. Doi: 10.15252/msb.20156487. (Link)
  459. Liu F, Li J, Wu F, et al. Altered composition and function of intestinal microbiota in autism spectrum disorders: a systematic review. Translational Psychiatry. 2019; 9(1):43. Doi: 10.1038/s41398-019-0389-6. (Link)
  460. Li Q, Han Y, Dy ABC, Hagerman RJ. The gut microbiota and autism spectrum disorders. Front Cell Neurosci. 2017; 11:120. Doi: 10.3389/fncel.2017.00120. (Link)
  461. Finegold SM, Molitoris D, Song Y, et al. Gastrointestinal microflora studies in last-onset autism. Clin Infect Dis. 2002; 35(Suppl 1):S6-S16. Doi: 10.1086/341914. (Link)
  462. Hughes HK, Ashwood P. Anti-candida albicans IgG antibodies in children with autism spectrum disorders. Front Psychiatry. 2018; 9:627. Doi: 10.3389/fpsyt.2018.00627. (Link)
  463. Strati F, Cavalieri D, Albanese D, et al. New evidences on the altered gut microbiota in autism spectrum disorders. Microbiome. 2017; 5(1):24. Doi: 10.1186/s40168-017-0242-1. (Link)
  464. Al-Sadi R, Guo S, Ye D, Rawat M, Ma TY. TNF-α modulation of intestinal tight junction permeability is mediated by NIK/IKK-α axis activation of the canonical NF-κB pathway. Am J Pathol. 2016; 186(5):1151-1165. Doi: 10.1016/j.ajpath.2015.12.016. (Link)
  465. D’Eufemia P, Celli M, Finocchiaro R, et al. Abnormal intestinal permeability in children with autism. Acta Paediatr. 1996; 85(9):1076-1079. Doi: 10.1111/j.1651-2227.1996.tb14220.x. (Link)
  466. Helander HF, Fändriks L. Surface area of the digestive tract – revisited. Scand J Gastroenterol. 2014; 49(6):681-689. Doi: 10.3109/00365521.2014.898326. (Link)
  467. Neal EG, Chaffe H, Schwartz RH, et al. The ketogenic diet for the treatment of childhood epilepsy: a randomised controlled trial. Lancet Neurol. 2008; 7(6):500-506. Doi: 10.1016/S1474-4422(08)70092-9. (Link)
  468. Evangeliou A, Vlachonikolis I, Mihailidou H, et al. Application of a ketogenic diet in children with autistic behavior: pilot study. J Child Neurol. 2003; 18(2):113-118. Doi: 10.1177/08830738030180020501. (Link)
  469. Ruskin DN, Svedova J, Cote JL, et al. Ketogenic diet improves core symptoms of autism in BTBR mice. PLoS One. 2013; 8(6):e65021. Doi: 10.1371/journal.pone.0065021. (Link)
  470. Herbert MA, Buckley JA. Autism and dietary therapy: case report and review of the literature. J Child Neurol. 2013; 28(8):975-982. Doi: 10.1177/0883073813488668. (Link)
  471. Smith J, Rho JM, Teskey GC. Ketogenic diet restores aberrant cortical motor maps and excitation-to-inhibition imbalance in the BTBR mouse model of autism spectrum disorder. Behav Brain Res. 2016; 304:67-70. Doi: 10.1016/j.bbr.2016.02.015. (Link)
  472. Uribarri J, Woodruff S, Goodman S, et al. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc. 2010; 110(6):911-916.e12. Doi: 10.1016/j.jada.2010.03.018. (Link)
  473. Reichelt KL, Knivsberg AM, Lind G, Nødland M. Probable etiology and possible treatment of childhood autism. Brain Dysfunct. 1991; 4(6):308-319. (Link)
  474. Knivsberg AM, Reichelt KL, Høien T, Nødland M. A randomized, controlled study of dietary intervention in autistic syndromes. Nutr Neurosci. 2002; 5(4):251-261. Doi: 10.1090/10284150290028945. (Link)
  475. Knivsberg AM, Reichelt KL, Nødland M. Reports on dietary intervention in autistic disorders. Nutr Neurosci. 2001; 4(1):25-37. Doi: 10.1080/1028415X.2001.11747348. (Link)
  476. Jianqin S, Leiming X, Lu X, et al. Effects of milk containing only A2 beta casein versus milk containing both A1 and A2 beta casein proteins on gastrointestinal physiology, symptoms of discomfort, and cognitive behavior of people with self-reported intolerance to traditional cows’ milk. Nutr J. 2015; 15:35. Doi: 10.1186/s12937-016-0147-z. (Link)
  477. Reichelt KL, Tveiten D, Knivsberg AM, Brønstad G. Peptides’ role in autism with emphasis on exorphins. Microb Ecol Health Dis. 2012; 23. 10.3402/mehd.v23i0.18958. (Link)
  478. Trivedi MS, Hodgson NW, Walker SJ, et al. Epigenetic effects of casein-derived opioid peptides in SH-SY5Y human neuroblastoma cells. Nutrition & Metabolism. 2015; 12(1):54. Doi: 10.1186/s12986-015-0050-1. (Link)
  479. Tučková L, Tlaskalová-Hogenová H, Farré MA, et al. Molecular mimicry as a possible cause of autoimmune reactions in celiac disease? Antibodies to gliadin cross-react with epitopes on enterocytes. Clin Immunol Immunopathol. 1995; 74(2):170-176. Doi: 10.1006/clin.1995.1025. (Link)
  480. Schade RP, Van leperen-Van Dijk AG, Versluis C, et al. Cell surface expression of CD25, CD26 and CD30 by allergen-specific T cells is intrinsically different in cow’s milk allergy. Allergy Clin. Immunology. 2002; 109(2):357-362. Doi: 10.1067/mai.2002.121457. (Link)
  481. Vojdani A, Pangborn JB, Vojdani E, Cooper EL. Infections, toxic chemicals and dietary peptides binding to lymphocyte receptors and tissue enzymes are major instigators of autoimmunity in autism. Int J of Immunopathol and Pharmacol. 2003; 16(3):189-199. Doi: 10.1177/039463200301600302. (Link)
  482. Brudnak MA, Rimland B, Kerry RE, et al. Enzyme-based therapy for autism-spectrum disorders – is it worth another look? Med Hypotheses. 2002; 58(5):422-428. Doi: 10.1054/mehy.2001.1513. (Link)
  483. Waring RH, Klovrza LV. Sulphur metabolism in autism. J Nutr Environ Med. 2000; 10(1):25-32. Doi: 10.1080/13590840050000861. (Link)
  484. Jing MY, Sun JY, Weng XY, Wang JF. Effects of zinc levels on activities of gastrointestinal enzymes in growing rats. J Anim Physiol Anim Nutr (Berl). 2009; 93(5):606-612. Doi: 10.1111/j.1439-0396.2008.00843.x. (Link)
  485. Chassaing B, De Bodt J, Marzorati M, Van de Wiele T, Gewirtz AT. Dietary emulsifiers directly alter human microbiota composition and gene expression ex vivo potentiating intestinal inflammation. Gut. 2017; 66(8):1414-1427. Doi: 10.1136/gutjnl-2016-313099. (Link)
  486. Chassaing B, Koren O, Goodrich JK, et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature. 2015; 519(7541):92-96. Doi: 10.1038/nature14232. (Link)
  487. Laudisi F, Di Fusco D, Dinallo V, et al. The food additive maltodextrin promotes endoplasmic reticulum stress-driven mucus depletion and exacerbates intestinal inflammation. Cell Mol Gastroenterol Hepatol. 2019; 7(2):457-473. Doi: 10.1016/j.jcmgh.2018.09.002. (Link)
  488. Pinget G, Tan J, Janac B, et al. Impact of the food additive titanium dioxide (E171) on gut microbiota-host interaction. Front Nutr. 2019; 6:57. Doi: 10.3389/fnut.2019.00057. (Link)
  489. Bamforth KJ, Jones AL, Roberts RC, Coughtrie MW. Common food additives are potent inhibitors of human liver 17 alpha-ethinyloestradiol and dopamine sulphotransferases. Biochem Pharmacol. 1993; 46(10):1713-1720. Doi: 10.1016/0006-2952(93)90575-h. (Link)
  490. Paula Neto HA, Ausina P, Gomez P, et al. Effects of food additives on immune cells as contributors to body weight gain and immune-mediated metabolic dysregulation. Front Immunol. 2017; 8:1478. Doi: 10.3389/fimmu.2017.01478. (Link)
  491. Suez J, Korem T, Zeevi D, et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature. 2014; 514(7521):181-186. Doi: 10.1038/nature13793. (Link)
  492. Chiang EP, Smith DE, Selhub J, et al. Inflammation causes tissue-specific depletion of vitamin B6. Arthritis Res Ther. 2005; 7(6):R1254-R1262. Doi: 10.1186/ar1821. (Link)
  493. Matxain JM, Padro D, Ristilä M, Strid A, Eriksson LA. Evidence of high *OH radical quenching efficiency by vitamin B6. J Phys Chem B. 2009; 113(29):9629-9632. Doi: 10.1021/jp903023c. (Link)
  494. Buc HA, Demaugre F, Moncion A, Leroux JP. Metabolic consequences of pyruvate kinase inhibition by oxalate in intact rat hepatocytes. Biochimie. 1981; 63(7):595-602. Doi: 10.1016/s0300-9084(81)80057-0. (Link)
  495. Pappius HM, Denstedt OF. Studies on the preservation of blood. III. Reversible inhibition of glycolysis in blood by oxalate. Can J Biochem Physiol. 1954; 32(3):338-345. Doi: 10.1139/y54-036. (Link)
  496. Karniski LP. Effects of sulfate and chloride on three separate oxalate transporters reconstituted from rabbit renal cortex. Am J Physiol. 1998; 274(1):F189-F196. Doi: 10.1152/ajprenal.1998.274.1.F189. (Link)
  497. Brzica H, Breljak D, Krick W, et al. The liver and kidney expression of sulfate anion transporter sat-1 in rats exhibits male-dominant gender differences. Pflügers Archiv – European Journal of Physiology. 2009; 457(6):1381-1392. Doi: 10.1007/s00424-008-0611-5. (Link)
  498. Currais A, Farrokhi C, Dargusch R, Goujon-Svrzic M, Maher P. Dietary glycemic index modulates the behavioral and biochemical abnormalities associated with autism spectrum disorder. Mol Psychiatry. 2016; 21(3):426-436. Doi: 10.1038/mp.2015.64. (Link)
  499. Pfeifer HH, Thiele EA. Low-glycemic-index treatment: a liberalized ketogenic diet for treatment of intractable epilepsy. Neurology. 2005; 65(11):1810-1812. Doi: 10.1212/01.wnl.0000187071.24292.9e. (Link)
  500. Livesey G. Low-glycaemic diets and health: implications for obesity. Proc Nutr Soc. 2005; 64(1):105-113. Doi: 10.1079/pnas2004400. (Link)
  501. Pereira MA, Swain J, Goldfine AB, Rifai N, Ludwig DS. Effects of a low-glycemic load diet on resting energy expenditure and heart disease risk factors during weight loss. JAMA. 2004; 292(20):2482-2490. Doi: 10.1001/jama.292.20.2482. (Link)
  502. de Koning L, Malik VS, Kellogg MD, et al. Sweetened beverage consumption, incident coronary heart disease, and biomarkers of risk in men. Circulation. 2012; 125(14):1735-1741. Doi: 10.1161/Circulationaha.111.067017. (Link)
  503. Casperson SL, Hall C, Roemmich JN. Postprandial energy metabolism and substrate oxidation in response to the inclusion of a sugar- or non-nutritive sweetened beverage with meals differing in protein content. BMC Nutrition. 2017; 3:49. Doi: 10.1186/s40795-017-0170-2. (Link)
  504. Basciano H, Federico L, Adeli K. Fructose, insulin resistance, and metabolic dyslipidemia. Nutr Metab (Lond). 2005; 2:5. Doi: 10.1186/1743-7075-2-5. (Link)
  505. Pross N, Demazières A, Girard N, et al. Influence of progressive fluid restriction on mood and physiological markers of dehydration in women. Br J Nutr. 2013; 109(2):313-321. Doi: 10.1017/S0007114512001080. (Link)
  506. Boschmann M, Steiniger J, Hille U, et al. Water-induced thermogenesis. J Clin Endocrinol Metab. 2003; 88(12):6015-6019. Doi: 10.1210/jc.2003-030780. (Link)
  507. El-Sharkawy AM, Sahota O, Lobo DN. Acute and chronic effects of hydration status on health. Nutr Rev. 2015; 73(Suppl 2):97-109. Doi: 10.1093/nutrit/nuv038. (Link)
  508. Venditti E, Bacchetti T, Tiano L, et al. Hot vs. cold water steeping of different teas: do they affect antioxidant activity? Food Chem. 2010; 119(4):1597-1604. Doi: 10.1016/j.foodchem.2009.09.049. (Link)
  509. Hanaoka K, Sun D, Lawrence R, Kamitani Y, Fernandes G. The mechanism of the enhanced antioxidant effects against superoxide anion radicals of reduced water produced by electrolysis. Biophys Chem. 2004; 107(1):71-82. Doi: 10.1016/j.bpc.2003.08.007. (Link)
  510. Spulber S, Edoff K, Hong L, et al. Molecular hydrogen reduces LPS-induced neuroinflammation and promotes recovery from sickness behaviour in mice. PLoS One. 2012; 7(7):e42078. Doi: 10.1371/journal.pone.0042078. (Link)
  511. Lee MY, Kim YK, Ryoo KK, Lee YB, Park EJ. Electrolyzed-reduced water protects against oxidative damage to DNA, RNA, and protein. Appl Biochem Biotechnol. 2006; 135(2):133-144. Doi: 10.1385/abab:135:2:133. (Link)
  512. Shirahata S, Kabayama S, Nakano M, et al. Electrolyzed-reduced water scavenges active oxygen species and protects DNA from oxidative damage. Biochem Biophys Res Commun. 1997; 234(1):269-274. Doi: 10.1006/bbrc.1997.6622. (Link)
  513. Kim I, Rodriguez-Enriquez S, Lemasters JJ. Minireview: selective degradation of mitochondria by mitophagy. Arch Biochem Biophys. 2007; 462(2):245-253. Doi: 10.1016/j.abb.2007.03.034. (Link)
  514. Van Cauter E, Polonsky KS, Scheen AJ. Roles of circadian rhythmicity and sleep in human glucose regulation. Endocr Rev. 1997; 18(5):716-738. Doi: 10.1210/edrv.18.5.0317. (Link)
  515. Jakubowicz D, Barnea M, Wainstein J, Froy O. High caloric intake at breakfast vs. dinner differentially influences weight loss of overweight and obese women. Obesity (Silver Spring). 2013; 21(12):2504-2512. Doi: 10.1002/oby.20460. (Link)
  516. Patterson RE, Laughlin GA, Sears DD, et al. Intermittent fasting and human metabolic health. J Acad Nutr Diet. 2015; 115(8):1203-1212. Doi: 10.1016/j.jand.2015.02.018. (Link)
  517. Kahleova H, Belinova L, Malinska H, et al. Eating two larger meals a day (breakfast and lunch) is more effective than six smaller meals in a reduced-energy regimen for patients with type 2 diabetes: a randomised crossover study. Diabetologia. 2014; 57(8):1552-1560. Doi: 10.1007/s00125-014-3253-5. (Link)
  518. Imai S, Fukui M, Ozasa N, et al. Eating vegetables before carbohydrates improves postprandial glucose excursions. Diabet Med. 2013; 30(3):370-372. Doi: 10.1111/dme.12073. (Link)
  519. Perry GH, Dominy NJ, Claw KG, et al. Diet and the evolution of human amylase gene copy number variation. Nat Genet. 2007; 39(10):1256-1260. Doi: 10.1038/ng2123. (Link)
  520. Falchi M, El-Sayed Moustafa JS, Takousis P, et al. Low copy number of the salivary amylase gene predisposes to obesity. Nat Genet. 2014; 46(5):492-497. Doi: 10.1038/ng.2939. (Link)
  521. Marquina C, Mousa A, Belski R, et al. Increased inflammation and cardiometabolic risk in individuals with low AMY1 copy numbers. J Clin Med. 2019; 8(3):382. Doi: 10.3390/jcm8030382. (Link)
  522. Poole AC, Goodrich JK, Youngblut ND, et al. Human salivary amylase gene copy number impacts oral and gut microbiomes. Cell Host Microbe. 2019; 25(4):553-564.e7 Doi: 10.1016/j.chom.2019.03.001. (Link)
  523. Yadav JK, Prakash V. Stabilization of α-amylase, the key enzyme in carbohydrates properties alterations, at low pH. Int J Food Prop. 2011; 14(6):1182-1196. Doi: 10.1080/10942911003592795. (Link)
  524. Lennard-Jones JE, Fletcher J, Shaw DG. Effects of different foods on the acidity of the gastric contents in patients with duodenal ulcer. Part III: Effect of altering the proportions of protein and carbohydrate. Gut. 1968; 9(2):177-182. Doi: 10.1136/gut.9.2.177. (Link)
  525. Hunt MG, Marx R, Lipson C, Young J. No more FOMO: limiting social media decreases loneliness and depression. J Soc Clin Psychol. 2018; 37(10):751-768. Doi: 10.1521/jscp.2018.37.10.751. (Link)
  526. Vanman EJ, Baker R, Tobin SJ. The burden of online friends: the effects of giving up Facebook on stress and well-being. J Soc Psych. 2018; 158(4):496-508. Doi: 10.1080/00224545.2018.1453467. (Link)
  527. Shakya HB, Christakis NA. Association of Facebook use with compromised well-being: a longitudinal study. Am J Epidemiol. 2017; 185(3):203-211. Doi: 10.1093/aje/kww189. (Link)
  528. Marin MF, Morin-Major JK, Schramek TE, et al. There is no news like bad news: women are more remembering and stress reactive after reading real negative news than men. PLoS One. 2012; 7(10):e47189. Doi: 10.1371/journal.pone.0047189. (Link)
  529. Johnston WM, Davey GC. The psychological impact of negative TV news bulletins: the catastrophizing of personal worries. Br J Psych. 1997; 88(Pt 1):85-91. Doi: 10.1111/j.2044-8295.1997.tb02622.x. (Link)
  530. Ames BN. Low micronutrient intake may accelerate the degenerative diseases of aging through allocation of scarce micronutrients by triage. PNAS. 2006; 103(47):17589-17594. Doi: 10.1073/pnas.0608757103. (Link)
  531. Asmar A, Mohandas R, Wingo CS. A physiologic-based approach to the treatment of a patient with hypokalemia. Am J Kidney Dis. 2012; 60(3):492-497. Doi: 10.1053/j.ajkd.2012.01.031. (Link)
  532. Ismail Y, Ismail AA, Ismail AA. The underestimated problem of using serum magnesium measurements to exclude magnesium deficiency in adults; a health warning is needed for “normal” results. Clin Chem Lab Med. 2010; 48(3):323-327. Doi: 10.1515/CCLM.2010.077. (Link)
  533. Arnold A, Tovey J, Mangat P, Penny W, Jacobs S. Magnesium deficiency in critically ill patients. Anaesthesia. 1995; 50(3):203-205. Doi: 10.1111/j.1365-2044.1995.tb04556.x. (Link)
  534. Pfrieger FW, Barres BA. Synaptic efficacy enhanced by glial cells in vitro. Science. 1997; 277(5332):1684-1687. Doi: 10.1126/science.277.5332.1684. (Link)
  535. Ullian EM, Sapperstein SK, Christopherson KS, Barres BA. Control of synapse number by glia. Science. 2001; 291(5504):657-661. Doi: 10.1126/science.291.5504.657. (Link)
  536. Bessis A, Béchade C, Bernard D, Roumier A. Microglial control of neuronal death and synaptic properties. Glia. 2007; 55(3):233-238. Doi: 10.1002/glia.20459. (Link)
  537. Tilleux S, Hermans E. Neuroinflammation and regulation of glial glutamate uptake in neurological disorders. J Neurosci Res. 2007; 85(10):2059-2070. Doi: 10.1002/jnr.21325. (Link)
  538. Pardo-Villamizar CA. Can Neuroinflammation influence the development of autism spectrum disorders? In: Zimmerman AW, editor. Autism: Current Theories and Evidence (Current Clinical Neurology). Totowa, NJ: Humana Press; 2008. 329-346. Doi: 10.1007/978-1-60327-489-0_15. (Link)
  539. Aloisi F. Immune function of microglia. Glia. 2001; 36(2):165-179. Doi: 10.1002/glia.1106. (Link)
  540. Blaylock RL. A possible central mechanism in autism spectrum disorders, part 3: the role of excitotoxin food additives and the synergistic effects of other environmental toxins. Altern Ther Health Med. 2009; 15(2):56-60. (Link)
  541. Garg TK, Chang JY. Methylmercury causes oxidative stress and cytotoxicity in microglia: attenuation by 15-deoxy-delta 12, 14-prostaglandin J2. J Neuroimmunol. 2006; 171(1-2):17-28. Doi: 10.1016/j.jneuroim.2005.09.007. (Link)
  542. Shanker G, Aschner JL, Syversen T, Aschner M. Free radical formation in cerebral cortical astrocytes in culture induced by methylmercury. Brain Res Mol Brain Res. 2004; 128(1):48-57. Doi: 10.1016/j.molbrainres.2004.05.022. (Link)
  543. Benn T, Halfpenny C, Scolding N. Glial cells as targets for cytotoxic immune mediators. Glia. 2001; 36(2):200-211. Doi: 10.1002/glia.1109. (Link)
  544. Dringen R, Gutterer JM, Hirrlinger J. Glutathione metabolism in brain metabolic interaction between astroglia and neurons in the defense against reactive oxygen species. Eur J Biochem. 2000; 267(16):4912-4916. Doi: 10.1046/j.1432-1327.2000.01597.x. (Link)
  545. Pang Y, Rodts-Palenik S, Cai Z, Bennett WA, Rhodes PG. Suppression of glial activation is involved in the protection of IL-10 on maternal E. coli induced neonatal white matter injury. Dev Brain Res. 2005; 157(2):141-149. Doi: 10.1016/j.devbrainres.2005.03.015. (Link)
  546. Lindberg D, Shan D, Ayers-Ringler J, et al. Purinergic signaling and energy homeostasis in psychiatric disorders. Curr Mol Med. 2015; 15(3):275-95. Doi: 10.2174/1566524015666150330163724. (Link)
  547. Cauwels A, Rogge E, Vandendriessche B, Shiva S, Brouckaert P. Extracellular ATP drives systemic inflammation, tissue damage and mortality. Cell Death Dis. 2014; 5(3):e1102. Doi: 10.1038/cddis.2014.70. (Link)
  548. Eltzschig HK, Sitkovsky MV, Robson SC. Purinergic signaling during inflammation. N Engl J Med. 2012; 367(24):2322-2333. Doi: 10.1056/NEJMra1205750. (Link)
  549. Newman EA. Glial cell inhibition of neurons by release of ATP. J Neurosci. 2003; 23(5):1659-1666. Doi: 10.1523/Jneurosci.23-05-01659.2003. (Link)
  550. Pascual O, Casper KB, Kubera C, et al. Astrocytic purinergic signaling coordinates synaptic networks. Science. 2005; 310(5745):113-116. Doi: 10.1126/science.1116916. (Link)
  551. Naviaux RK, Zolkipli Z, Wang L, et al. Antipurinergic therapy corrects the autism-like features in the poly(IC) mouse model. PloS One. 2013; 8(3):e57380. Doi: 10.1371/journal.pone.0057380. (Link)
  552. Segal M, Korkotian E, Murphy DD. Dendritic spine formation and pruning: common cellular mechanisms? Trends Neurosci. 2000; 23(2):53-57. Doi: 10.1016/S0166-2236(99)01499-X. (Link)
  553. Clerc P, Young CA, Bordt EA, et al. Magnesium sulfate protects against the bioenergetic consequences of chronic glutamate receptor stimulation. PloS One. 2013; 8(11):e79982. Doi: 10.1371/journal.pone.0079982. (Link)
  554. Oliet SH, Piet R, Poulain DA. Control of glutamate clearance and synaptic efficacy by glial coverage of neurons. Science. 2001; 292(5518):923-926. Doi: 10.1126/science.1059162. (Link)
  555. Bittigau P, Ikonomidou C. Topical review: glutamate in neurologic diseases. J Child Neurol. 1997; 12(8):471-485. Doi: 10.1177/088307389701200802. (Link)
  556. Neumann H. Control of glial immune function by neurons. Glia. 2001; 36(2):191-199. Doi: 10.1002/glia.1108. (Link)
  557. Miller AH, Raison CL. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol. 2016; 16(1):22-34. Doi: 10.1038/nri.2015.5. (Link)
  558. Shinohe A, Hashimoto K, Nakamura K, et al. Increased serum levels of glutamate in adult patients with autism. Prog Neuropsychopharmacol Biol Psychiatry. 2006; 30(8):1472-1477. Doi: 10.1016/j.pnpbp.2006.06.013. (Link)
  559. Purcell AE, Jeon OH, Zimmerman AW, Blue ME, Pevsner J. Postmortem brain abnormalities of the glutamate neurotransmitter system in autism. Neurology. 2001; 57(9):1618-1628. Doi: 10.1212/wnl.57.9.1618. (Link)
  560. Fatemi SH, Halt AR, Stary JM, et al. Glutamic acid decarboxylase 65 and 67 kDa proteins are reduced in autistic parietal and cerebellar cortices. Biol Psychiatry. 2002; 52(8):805-810. Doi: 10.1016/s0006-3223(02)01430-0. (Link)
  561. Rubenstein JL, Merzenich MM. Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav. 2003; 2(5):255-267. Doi: 10.1034/j.1601-183X.2003.00037.x. (Link)
  562. Posey DJ, Kem DL, Swiezy NB, et al. A pilot study of D-cycloserine in subjects with autistic disorder. Am J Psychiatry. 2004; 161(11):2115-2117. Doi: 10.1176/appi.ajp.161.11.2115. (Link)
  563. Evers M, Hollander E. Excitotoxicity in autism, the role of glutamate in pathogenesis and treatment. In: Zimmerman AW, editor. Autism: Current Theories and Evidence. Totowa, NJ: Humana Press; 2008. 133-145. (Link)
  564. Malhi P, Singhi P. Regression in children with autism spectrum disorders. Indian J Pediatr. 2012; 79(10):1333-1337. Doi: 10.1007/s12098-012-0683-2. (Link)
  565. Davidovitch M, Glick L, Holtzman G, Tirosh E, Safir MP. Developmental regression in autism: maternal perception. J Autism Dev Disord. 2000; 30(2):113-119. Doi: 10.1023/a:1005403421141. (Link)
  566. Pocock JM, Kettenmann H. Neurotransmitter receptors on microglia. Trends Neurosci. 2007; 30(10):527-535. Doi: 10.1016/j.tins.2007.07.007. (Link)
  567. Görg B, Wettstein M, Metzger S, Schliess F, Häussinger D. Lipopolysaccharide-induced tyrosine nitration and inactivation of hepatic glutamine synthetase in the rat. Hepatology. 2005; 41(5):1065-1073. Doi: 10.1002/hep.20662. (Link)
  568. Kapfhammer JP. Cellular and molecular control of dendritic growth and development of cerebellar Purkinje cells. Prog Histochem Cytochem. 2004; 39(3):131-182. Doi: 10.1016/j.proghi.2004.07.002. (Link)
  569. Keller F, Panteri R, Biamonte F. Interaction between genetic vulnerability and neurosteroids in Purkinje cells as a possible neurobiological mechanism in autism spectrum disorders. In: Zimmerman AW, editor. Autism: Current Theories and Evidence. Totowa, NJ: Humana Press; 2008. 209-231. (Link)
  570. Bailey A, Luthert P, Dean A, et al. A clinicopathological study of autism. Brain. 1998; 121(Pt 5):889-905. Doi: 10.1093/brain/121.5.889. (Link)
  571. Ritvo ER, Freeman BJ, Scheibel AB, et al. Lower Purkinje cell counts in the cerebella of four autistic subjects: initial findings of the UCLA-NSAC Autopsy Research Project. Am J Psychiatry. 1986; 143(7):862-866. Doi: 10.1176/ajp.143.7.862. (Link)
  572. Fukudome Y, Tabata T, Miyoshi T, et al. Insulin-like growth factor-I as a promoting factor for cerebellar Purkinje cell development. Eur J Neurosci. 2003; 17(10):2006-2016. Doi: 10.1046/j.1460-9568.2003.02640.x. (Link)
  573. Torres-Aleman I, Pons S, Santos-Benito FF. Survival of Purkinje cells in cerebellar cultures is increased by insulin-like growth factor I. Eur J Neurosci. 1992; 4(9):864-869. Doi: 10.1111/j.1460-9568.1992.tb00196.x. (Link)
  574. Vanhala R, Turpeinen U, Riikonen R. Low levels of insulin-like growth factor-I in cerebrospinal fluid in children with autism. Dev Med Child Neurol. 2001; 43(9):614-616. Doi: 10.1111/j.1469-8749.2001.tb00244.x. (Link)
  575. Rossman IT, DiCicco-Bloom E. ENGRAILED2 and cerebellar development in the pathogenesis of autism spectrum disorders. In: Zimmerman AW, editor. Autism: Current Theories and Evidence. Totowa, NJ: Humana Press; 2008. 3-40. (Link)
  576. Michels G, Moss SJ. GABAA receptors: properties and trafficking. Crit Rev Biochem Mol Biol. 2007; 42(1):3-14. Doi: 10.1080/10409230601146219. (Link)
  577. Slemmer JE, De Zeeuw CI, Weber JT. Don’t get too excited: mechanisms of glutamate-mediated Purkinje cell death. Prog Brain Res. 2005; 148:367-390. Doi: 10.1016/S0079-6123(04)48029-7. (Link)
  578. Blue ME, Johnston MV, Moloney CB, Hohmann CF. Serotonin dysfunction in autism. In: Zimmerman AW, editor. Autism: Current Theories and Evidence. Totowa, NJ: Humana Press; 2008. 111-132. (Link)
  579. Matsukawa M, Nakadate K, Ishihara I, Okado N. Synaptic loss following depletion of noradrenaline and/or serotonin in the rat visual cortex: a quantitative electron microscopic study. Neuroscience. 2003; 122(3):627-635. Doi: 10.1016/j.neuroscience.2003.08.047. (Link)
  580. Faber KM, Haring JH. Synaptogenesis in the postnatal rat fascia dentate is influenced by 5-HT1a receptor activation. Dev Brain Res. 1999; 114(2):245-252. Doi: 10.1016/s0165-3806(99)00036-x. (Link)
  581. Sodhi MS, Sanders-Bush E. Serotonin and brain development. Int Rev Neurobiol. 2004; 59:111-174. Doi: 10.1016/S0074-7742(04)59006-2. (Link)
  582. Chugani DC, Muzik O, Behen M, et al. Developmental changes in brain serotonin synthesis capacity in autistic and nonautistic children. Ann Neurol. 1999; 45(3):287-295. Doi: 10.1002/1531-8249(199903)45:3<287::AID-ANA3>3.0.CO;2-9. (Link)
  583. Connors SL, Matteson KJ, Sega GA, et al. Plasma serotonin in autism. Pediatr Neurol. 2006; 35(3):182-186. Doi: 10.1016/j.pediatrneurol.2006.02.010. (Link)
  584. Cook EH Jr, Courchesne R, Lord C, et al. Evidence of linkage between the serotonin transporter and autistic disorder. Mol Psychiatry. 1997; 2(3):247-250. Doi: 10.1038/sj.mp.4000266. (Link)
  585. Hasselmo ME. The role of acetylcholine in learning and memory. Curr Opin Neurobiol. 2006; 16(6):710-715. Doi: 10.1016/j.conb.2006.09.002. (Link)
  586. Zhong LR, Estes S, Artinian L, Rehder V. Acetylcholine elongates neuronal growth cone filopodia via activation of nicotinic acetylcholine receptors. Dev Neurobiol. 2013; 73(7):487-501. Doi: 10.1002/dneu.22071. (Link)
  587. Tu Q, Li L, Zhang Y, et al. The effect of acetylcholine-like biomimetic polymers on neuronal growth. Biomaterials. 2011; 32(12):3253-3264. Doi: 10.1016/j.biomaterials.2011.01.044. (Link)
  588. Omura Y, Lu D, Jones MK, et al. Early detection of autism (ASD) by a non-invasive quick measurement of markedly reduced acetylcholine & DHEA and increased beta-amyloid (1-42), asbestos (Chrysotile), titanium dioxide, Al, Hg & often coexisting virus infection (CMV, HPV 16 and 18), bacterial infections etc. in the brain and corresponding safe individualized effective treatment. Acupunct Electrother Res. 2015; 40(3):157-187. Doi: 10.3727/036012915X14473562232941. (Link)
  589. Friedman SD, Shaw DW, Artru AA, et al. Gray and white matter brain chemistry in young children with autism. Arch Gen Psychiatry. 2006; 63(7):786-794. Doi: 10.1001/archpsyc.63.7.786. (Link)
  590. Karvat G, Kimchi T. Acetylcholine elevation relieves cognitive rigidity and social deficiency in a mouse model of autism. Neuropsychopharmacology. 2014; 39(4):831-840. Doi: 10.1038/npp.2013.274. (Link)
  591. Lam KS, Aman MG, Arnold E. Neurochemical correlates of autistic disorder: a review of the literature. Res Dev Disabil. 2006; 27(3):254-289. Doi: 10.1016/j.ridd.2005.03.003. (Link)
  592. Gotti C, Zoli M, Clementi F. Brain nicotinic acetylcholine receptors: native subtypes and their relevance. Trends Pharmacol Sci. 2006; 27(9):482-491. Doi: 10.1016/j.tips.2006.07.004. (Link)
  593. Cloёz-Tayarani I, Changeux JP. Nicotine and serotonin in immune regulation and inflammatory processes: a perspective. J Leukoc Biol. 2007; 81(3):599-606. Doi: 10.1189/jlb.0906544. (Link)
  594. Tau GZ, Peterson BS. Normal development of brain circuits. Neuropsychopharmacology. 2010; 35(1):147-168. Doi: 10.1038/npp.2009.115. (Link)
  595. Courchesne E, Mouton PR, Calhoun ME, et al. Neuron number and size in prefrontal cortex of children with autism. JAMA. 2011; 306(18):2001-2010. Doi: 10.1001/jama.2011.1638. (Link)
  596. Tang G, Gudsnuk K, Kuo SH, et al. Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits. Neuron. 2014; 83(5):1131-1143. Doi: 10.1016/j.neuron.2014.07.040. (Link)
  597. Miyazaki K, Narita N, Sakuta R, et al. Serum neurotropin concentrations in autism and mental retardation: a pilot study. Brain Dev. 2004; 26(5):292-295. Doi: 10.1016/S0387-7604(03)00168-2. (Link)
  598. Kasarpalkar NJ, Kothari ST, Dave UP. Brain-derived neurotrophic factor in children with autism spectrum disorder. Ann Neurosci. 2014; 21(4):129-133. Doi: 10.5214/ans.0972.7531.210403. (Link)
  599. Treffert DA. The savant syndrome: an extraordinary condition. A synopsis: past, present, future. Philos Trans R Soc Lond B Biol Sci. 2009; 364(1522):1351-1357. Doi: 10.1098/rstb.2008.0326. (Link)
  600. Herbert MR, Ziegler DA, Makris N, et al. Localization of white matter volume increase in autism and developmental language disorder. Ann Neurol. 2004; 55(4):530-540. Doi: 10.1002/ana.20032. (Link)
  601. Belmonte MK, Allen G, Beckel-Mitchener A, et al. Autism and abnormal development of brain connectivity. J Neurosci. 2004; 24(42):9228-9231. Doi: 10.1523/JNEUROSCI.3340-04.2004. (Link)
  602. Murias M, Webb SJ, Greenson J, Dawson G. Resting state cortical connectivity reflected in EEG coherence in individuals with autism. Biol Psychiatry. 2007; 62(3):270-273. Doi: 10.1016/j.biopsych.2006.11.012. (Link)
  603. Rippon G, Brock J, Brown C, Boucher J. Disordered connectivity in the autistic brain: challenges for the ‘new psychophysiology’. Int J Psychophysiol. 2007; 63(2):164-172. Doi: 10.1016/j.ijpsycho.2006.03.012. (Link)
  604. Hughes JR. Autism: the first firm finding = underconnectivity? Epilepsy Behav. 2007; 11(1):20-24. Doi: 10.1016/j.yebeh.2007.03.010. (Link)
  605. Kana RK, Keller TA, Minshew NJ, Just MA. Inhibitory control in high-functioning autism: decreased activation and underconnectivity in inhibition networks. Biol Psychiatry. 2007; 62(3):198-206. Doi: 10.1016/j.biopsych.2006.08.004. (Link)
  606. Just MA, Cherkassky VL, Keller TA, Kana RK, Minshew NJ. Functional and anatomical cortical underconnectivity in autism: evidence from an fMRI of an executive function task and corpus callosum morphometry. Cereb Cortex. 2007; 17(4):951-961. Doi: 10.1093/cercor/bhl006. (Link)
  607. Geschwind DH, Levitt P. Autism spectrum disorders: developmental disconnection syndromes. Curr Opin Neurobiol. 2007; 17(1):103-111. Doi: 10.1016/j.conb.2007.01.009. (Link)
  608. Minshew NJ, Williams DL. The new neurobiology of autism: cortex, connectivity, and neuronal organization. Arch Neurol. 2007; 64(7):945-950. Doi: 10.1001/archneur.64.7.945. (Link)
  609. McAllister AK. Cellular and molecular mechanisms of dendritic growth. Cereb Cortex. 2000; 10(10):963-973. Doi: 10.1093/cercor/10.10.963. (Link)
  610. Arvidsson O, Gillberg C, Lichtenstein P, Lundström S. Secular changes in the symptom level of clinically diagnosed autism. J Child Psychol Psychiatry. 2018; 59(7):744-751. Doi: 10.1111/jcpp.12864. (Link)
  611. Javitt DC. Glutamate as a therapeutic target in psychiatric disorders. Mol Psychiatry. 2004; 9(11):984-997. Doi: 10.1038/sj.mp.4001551. (Link)
  612. Bergink V, van Megen HJ, Westenberg HG. Glutamate and anxiety. Eur Neuropsychopharmacology. 2004; 14(3):175-183. Doi:10.1016/S0924-977X(03)00100-7. (Link)
  613. Duan L, Rao X, Sigdel KR. Regulation of inflammation in autoimmune disease. J Immunol Res. 2019; 2019:7403796. Doi: 10.1155/2019/7403796. (Link)
  614. Moudgil KD, Choubey D. Cytokines in autoimmunity: role in induction, regulation, and treatment. J Interferon Cytokine Res. 2011; 31(10):695-703. Doi: 10.1089/jir.2011.0065. (Link)
  615. Holdsworth SR, Gan PY. Cytokines: names and numbers you should care about. Clin J Am Soc Nephrol. 2015; 10(12):2243-2254. Doi: 10.2215/CJN.07590714. (Link)
  616. Edmiston E, Ashwood P, Van de Water J. Autoimmunity, autoantibodies, and autism spectrum disorders (ASD). Biol Psychiatry. 2017; 81(5):383-390. Doi: 10.1016/j.biopsych.2016.08.031. (Link)
  617. Wu S, Ding Y, Wu F, et al. Family history of autoimmune diseases is associated with an increased risk of autism in children: a systematic review and meta-analysis. Neurosci Biobehav Rev. 2015; 55:322-332. Doi: 10.1016/j.neubiorev.2015.05.004. (Link)
  618. Braunschweig D, Krakowiak P, Duncanson P, et al. Autism-specific maternal autoantibodies recognize critical proteins in developing brain. Transl Psychiatry. 2013; 3:e277. Doi: 10.1038/tp.2013.50. (Link)
  619. Zimmerman AW, Connors SL, Matteson KJ, et al. Maternal antibrain antibodies in autism. Brain Behav Immun. 2007; 21(3):351-357. Doi: 10.1016/j.bbi.2006.08.005. (Link)
  620. Rosenberg RE, Law JK, Yenokyan G, et al. Characteristics and concordance of autism spectrum disorders among 277 twin pairs. Arch Pediatr Adolesc Med. 2009; 163(10):907-914. Doi: 10.1001/archpediatrics.2009.98. (Link)
  621. Hallmayer J, Cleveland S, Torres A, et al. Genetic heritability and shared environmental factors among twin pairs with autism. Arch Gen Psychiatry. 2011; 68(11):1095-1102. Doi: 10.1001/archgenpsychiatry.2011.76. (Link)
  622. Patterson PH, Xu W, Smith SEP, Devarman BE. Maternal immune activation, cytokines and autism. In: Zimmerman AW, editor. Autism: Current Theories and Evidence. Totowa, NJ: Humana Press; 2008. 289-307. Doi: 10.1007/978-1-60327-489-0_13. (Link)
  623. Aitken, KJ. A-Z of Genetic Factors in Autism. London, England: Jessica Kingsley Publishers; 2010. (Link)
  624. Acuna-Hidalgo R, Veltman JA, Hoischen A. New insights into the generation and role of de novo mutations in health and disease. Genome Biol. 2016; 17(1):241. Doi: 10.1186/s13059-016-1110-1. (Link)
  625. Cooke MS, Evans MD, Dizdaroglu M, Lunec J. Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J. 2003; 17(10):1195-1214. Doi: 10.1096/fj.02-0752rev. (Link)
  626. Cadet J, Wagner JR. DNA base damage by reactive oxygen species, oxidizing agents, and UV radiation. Cold Spring Harb Perpsect Biol. 2013; 5(2):a012559. Doi: 10.1101/cshperspect.a012559. (Link)
  627. Wiseman H, Halliwell B. Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem J. 1996; 313(Pt 1):17-29. Doi: 10.1042/b3130017. (Link)
  628. Schmeer KK. Inflammation among children: evidence of an immigrant advantage? Adv Med Sociol. 2019; 19:275-295. (Link)
  629. Barnevik-Olsson M, Gillberg C, Fernell E. Prevalence of autism in children born to Somali parents living in Sweden: a brief report. Developmental Medicine and Child Neurology. 2008; 50(8):598-601. Doi: 10.1111/j.1469-8749.2008.03036.x. (Link)
  630. Hewitt A, Hall-Lande J, Hamre K, et al. Autism spectrum disorder (ASD) prevalence in Somali and non-Somali children. J Autism Dev Disord. 2016; 46(8):2599-2608. Doi: 10.1007/s10803-016-2793-6. (Link)
  631. Hviid A, Hansen JV, Frisch M, Melbye M. Measles, mumps, rubella vaccination and autism: a nationwide cohort study. Ann Intern Med. 2019; 170(8):513-520. Doi: 10.7326/M18-2101. (Link)
  632. Jain A, Marshall J, Buikema A, et al. Autism occurrence by MMR vaccine status among US children with older siblings with and without autism. JAMA. 2015; 313(15):1534-1540. Doi: 10.1001/jama.2015.3077. (Link)
  633. Grabenhenrich LB, Gough H, Reich A, et al. Early-life determinants of asthma from birth to age 20 years: a German birth cohort study. J Allergy Clin Immunol. 2014; 133(4):979-988. Doi: 10.1016/j.jaci.2013.11.035. (Link)
  634. Schmitz R, Poethko-Müller C, Reiter S, Schlaud M. Vaccination status and health in children and adolescents: findings of the German Health Interview and Examination Survey for children and adolescents (KiGGS). Dtsch Arztebl Int. 2011; 108(7):99-104. Doi: 10.3238/arztebl.2011.0099. (Link)
  635. Bloom DE, Canning D, Shenoy ES. The effect of vaccination on children’s physical and cognitive development in the Philippines. Applied Economics. 2011; 44(21):2777-2783. Doi: 10.1080/00036846.2011.566203. (Link)
  636. Fine PE, Chen RT. Confounding in studies of adverse reactions to vaccines. Am J Epidemiol. 1992; 136(2):121-135. Doi: 10.1093/oxfordjournals.aje.a116479. (Link)
  637. Kuzawa CW, Chugani HT, Grossman LI, et al. Metabolic costs and evolutionary implications of human brain development. PNAS. 2014; 111(36):13010-13015. Doi: 10.1073/pnas.1323099111. (Link)
  638. Croen LA, Najjar DV, Fireman B, Grether JK. Maternal and paternal age and risk of autism spectrum disorders. Arch Pediatr Adolesc Med. 2007; 161(4):334-340. Doi: 10.1001/archpedi.161.4.334. (Link)
  639. King MD, Fountain C, Dakhlallah D, Bearman PS. Estimated autism risk and older reproductive age. Am J Public Health. 2009; 99(9):1673-1679. Doi: 10.2105/AJPH.2008.149021. (Link)
  640. Maimburg RD, Vaeth M. Perinatal risk factors and infantile autism. Acta Psychiatr Scand. 2006; 114(4):257-264. Doi: 10.1111/j.1600-0447.2006.00805.x. (Link)
  641. Sandin S, Schendel D, Magnusson P, et al. Autism risk associated with parental age and with increasing difference in age between the parents. Mol Psych. 2016; 21(5):693-700. Doi: 10.1038/mp.2015.70. (Link)
  642. Hultman CM, Sandin S, Levine SZ, Lichtenstein P, Reichenberg A. Advancing paternal age and risk of autism: new evidence from a population-based study and a meta-analysis of epidemiological studies. Mol Psychiatry. 2011; 16(12):1203-1212. Doi: 10.1038/mp.2010.121. (Link)
  643. Sanada F, Taniyama Y, Muratsu J, et al. Source of chronic inflammation in aging. Front Cardiovasc Med. 2018; 5:12. Doi: 10.3389/fcvm.2018.00012. (Link)
  644. Jung M, Pfeifer GP. Aging and DNA methylation. BMC Biol. 2015; 13:7. Doi: 10.1186/s12915-015-0118-4. (Link)
  645. Bocklandt S, Lin W, Sehl ME, et al. Epigenetic predictor of age. PLoS One. 2011; 6(6):e14821. Doi: 10.1371/journal.pone.0014821. (Link)
  646. von Ehrenstein OS, Ling C, Cui X, et al. Prenatal and infant exposure to ambient pesticides and autism spectrum disorder in children: population based case-control study. BMJ. 2019; 364:l962. Doi: 10.1136/bmj.l192. (Link)
  647. Pagalan L, Bickford C, Weikum W, et al. Association of prenatal exposure to air pollution with autism spectrum disorder. JAMA Pediatr. 2019; 173(1):86-92. Doi: 10.1001/jamapediatrics.2018.3101. (Link)
  648. Cheslack-Postava K, Rantakokko PV, Hinkka-Yli-Salomäki S, et al. Maternal serum persistent organic pollutants in the Finnish Prenatal Study of Autism: a pilot study. Neurotoxicol Teratol. 2013; 38:1-5. Doi: 10.1016/j.ntt.2013.04.001. (Link)
  649. Gallo MV, Schell LM, DeCaprio AP, Jacobs A. Levels of persistent organic pollutant and their predictors among young adults. Chemosphere. 2011; 83(10):1374-1382. Doi: 10.1016/j.chemosphere.2011.02.071. (Link)
  650. Gardener H, Spiegelman D, Buka SL. Prenatal risk factors for autism: comprehensive meta-analysis. Br J Psychiatry. 2009; 195(1):7-14. Doi: 10.1192/bjp.bp.108.051672. (Link)
  651. Glasson EJ, Bower C, Petterson B, et al. Perinatal factors and the development of autism: a population study. Arch Gen Psychiatry. 2004; 61(6):618-627. Doi: 10.1001/archpsyc.61.6.618. (Link)
  652. Urakubo A, Jarskog LF, Lieberman JA, Gilmore JH. Prenatal exposure to maternal infection alters cytokine expression in the placenta, amniotic fluid, and fetal brain. Schizophr Res. 2001; 47(1):27-36. Doi: 10.1016/S0920-9964(00)00032-3. (Link)
  653. James SJ. Oxidative stress and the metabolic pathology of autism. In: Zimmerman AW, editor. Autism: Current Theories and Evidence. Totowa, NJ: Humana Press; 2008. 245-268. (Link)
  654. Kapadia V, Embers D, Wells E, Lemler M, Rosenfeld CR. Prenatal closure of the ductus arteriosus and maternal ingestion of anthocyanins. J Perinatol. 2010; 30(4):291-294. Doi: 10.1038/jp.2009.140. (Link)
  655. Meyer U, Murray PJ, Urwyler A, et al. Adult behavioral and pharmacological dysfunctions following disruption of the fetal brain balance between pro-inflammatory and IL-10-mediated anti-inflammatory signaling. Mol Psychiatry. 2008; 13(2):208-221. Doi: 10.1038/sj.mp.4002042. (Link)
  656. Arulsevlan P, Fard MT, Tan WS, et al. Role of antioxidants and natural products in inflammation. Oxid Med Cell Longev. 2016; 2016:5276130. Doi: 10.1155/2016/5276130. (Link)
  657. Adapala N, Chan MM. Long-term use of an antiinflammatory, curcumin, suppressed type 1 immunity and exacerbated visceral leishmaniasis in a chronic experimental model. Lab Invest. 2008. 88(12):1329-1339. Doi: 10.1038/labinvest.2008.90. (Link)
  658. Cicchese JM, Evans S, Hult C, et al. Dynamic balance of pro- and anti-inflammatory signals controls disease and limits pathology. Immunol Rev. 2018; 285(1):147-167. Doi: 10.1111/imr.12671. (Link)
  659. Halladay AK, Bishop S, Constantino JN, et al. Sex and gender differences in autism spectrum disorder: summarizing evidence gaps and identifying emerging areas of priority. Mol Autism. 2015; 6:36. Doi: 10.1186/s13229-015-0019-y. (Link)
  660. Toran-Allerand CD, Singh M, Sétáló G Jr. Novel mechanisms of estrogen action in the brain: new players in an old story. Front Neuroendocrinol. 1999; 20(2):97-121. Doi: 10.1006/frne.1999.0177. (Link)
  661. Singer CA, Figueroa-Masot XA, Batchelor RH, Dorsa DM. The mitogen-activated protein kinase pathway mediates estrogen neuroprotection after glutamate toxicity in primary cortical neurons. J Neurosci. 1999; 19(7):2455-2463. Doi: 10.1523/JNEUROSCI.19-07-02455.1999. (Link)
  662. Green PS, Simpkins JW. Neuroprotective effects of estrogens: potential mechanisms of action. Int J Dev Neurosci. 2000; 18(4-5):347-358. Doi: 10.1016/S0736-5748(00)00017-4. (Link)
  663. Prokai L, Prokai-Tatrai K, Perjesi P, et al. Quinol-based cyclic antioxidant mechanism in estrogen neuroprotection. Proc Natl Acad Sci U S A. 2003; 100(20):11741-11746. Doi: 10.1073/pnas.2032621100. (Link)
  664. Lavoie JC, Chessex P. Gender and maturation affect glutathione status in human neonatal tissues. Free Radic Biol Med. 1997; 23(4):648-657. Doi: 10.1016/s0891-5849(97)00011-7. (Link)
  665. Viña J, Sastre J, Pallardó F, Borrás C. Mitochondrial theory of aging: importance to explain why females live longer than males. Antioxid Redox Signal. 2003; 5(5):549-556. Doi: 10.1089/152308603770310194. (Link)
  666. Singleton DW, Khan SA. Xenoestrogen exposure and mechanisms of endocrine disruption. Front Biosci. 2003; 8:s110-s118. Doi: 10.2741/1010. (Link)
  667. Wright CL, Hoffman JH, McCarthy MM. Evidence that inflammation promotes estradiol synthesis in human cerebellum during early childhood. Transl Psychiatry. 2019; 9(1):58. Doi: 10.1038/s41398-018-0363-8. (Link)
  668. Robinson JD, Judd HL, Young PE, Jones OW, Yen SS. Amniotic fluid androgens and estrogens in midgestation. J Clin Endocrinol Metab. 1977; 45(4):755-761. Doi: 10.1210/jcem-45-4-755. (Link)
  669. Stark MJ, Hodyl NA, Wright IM, Clifton VL. Influence of sex and glucocorticoid exposure on preterm placental pro-oxidant-antioxidant balance. Placenta. 2011; 32(11):865-870. Doi: 10.1016/j.placenta.2011.08.010. (Link)
  670. Enninga EA, Nevala WK, Creedon DJ, Markovic SN, Holtan SG. Fetal sex-based differences in maternal hormones, angiogenic factors, and immune mediators during pregnancy and the postpartum period. Am J Reprod Immunol. 2015; 73(3):251-262. Doi: 10.1111/aji.12303. (Link)
  671. Schröder J, Kahlke V, Staubach KH, Zabel P, Stüber F. Gender differences in human sepsis. Arch Surg. 1998; 133(11):1200-1205. Doi: 10.1001/archsurg.133.11.1200. (Link)
  672. Trotter A, Mück K, Grill HJ, et al. Gender-related plasma levels of progesterone, interleukin-8 and interleukin-10 during and after cardiopulmonary bypass in infants and children. Crit Care. 2001; 5(6):343-348. Doi: 10.1186/cc1067. (Link)
  673. Buckberry S, Bianco-Miotto T, Bent SJ, Dekker GA, Roberts CT. Integrative transcriptome meta-analysis reveals widespread sex-biased gene expression at the human fetal-maternal interface. Mol Hum Reprod. 2014; 20(8):810-819. Doi: 10.1093/molehr/gau035. (Link)
  674. Spolarics Z. The X-files of inflammation: cellular mosaicism of X-linked polymorphic genes and the female advantage in the host response to injury and infection. Shock. 2007; 27(6):597-604. Doi: 10.1097/SHK.0b013e31802e40bd. (Link)
  675. Jacquemont S, Coe BP, Hersch M, et al. A higher mutational burden in females supports a “female protective model” in neurodevelopmental disorders. Am J Hum Genet. 2014; 94(3):415-425. Doi: 10.1016/j.ajhg.2014.02.001. (Link)
  676. Woo CC, Donnelly JH, Steinberg-Epstein R, Leon M. Environmental enrichment as a therapy for autism: a clinical trial replication and extension. Behav Neurosci. 2015; 129(4):412-422. Doi: 10.1037/bne0000068. (Link)
  677. Woo CC, Leon M. Environmental enrichment as an effective treatment for autism: a randomized controlled trial. Behav Neurosci. 2013; 127(4):487-497. Doi: 10.1037/a0033010. (Link)
  678. Gaser C, Schlaug G. Brain structures differ between musicians and non-musicians. J Neurosci. 2003; 23(27):9240-9245. Doi: 10.1523/JNEUROSCI.23-27-09240.2003. (Link)
  679. Geretsegger M, Elefant C, Mössler KA, Gold C. Music therapy for people with autism spectrum disorder. Cochrane Database Syst Rev. 2014; (6):CD004381. Doi: 10.1002/14651858.CD004381.pub3. (Link)
  680. Dawson G, Rogers S, Munson J, et al. Randomized, controlled trial of an intervention for toddlers with autism: the Early Start Denver Model. Pediatrics. 2010; 125(1):e17-e23. Doi: 10.1542/peds.2009-0958. (Link)
  681. Devescovi R, Monasta L, Mancini A, et al. Early diagnosis and Early Start Denver Model intervention in autism spectrum disorders delivered in an Italian Public Health System service. Neuropsychiatr Dis Treat. 2016; 12:1379-1384. Doi: 10.2147/NDT.S106850. (Link)
  682. Vivanti G, Dissanayake C, Duncan E, et al. Outcomes of children receiving Group-Early Start Denver Model in an inclusive versus autism-specific setting: a pilot randomized controlled trial. Autism. 2019; 23(5):1165-1175. Doi: 10.1177/1362361318801341. (Link)
  683. Rogers SJ, Estes A, Lord C, et al. Effects of a brief Early Start Denver Model (ESDM)-based parent intervention on toddlers at risk for autism spectrum disorders: a randomized controlled trial. J Am Acad Child Adolesc Psychiatry. 2012; 51(10):1052-1065. Doi: 10.1016/j.jaac.2012.08.003. (Link)
  684. Yirmiya N, Charman T. The prodrome of autism: early behavioral and biological signs, regression, peri- and post-natal development and genetics. J Child Psychol Psychiatry. 2010; 51(4):432-458. Doi: 10.1111/j.1469-7610.2010.02214.x. (Link)
  685. Rogers SJ, Vismara L, Wagner AL, et al. Autism treatment in the first year of life: a pilot study of infant start, a parent-implemented intervention for symptomatic infants. J Autism Dev Disord. 2014; 44(12):2981-2995. Doi: 10.1007/s10803-014-2202-y. (Link)
  686. Valk SL, Bernhardt BC, Trautwein FM, et al. Structural plasticity of the social brain: differential change after socio-affective and cognitive mental training. Sci Adv. 2017; 3(10):e1700489. Doi: 10.1126/sciadv.17000489. (Link)
  687. Pilegaard H, Saltin B, Neufer PD. Exercise induces transient transcriptional activation of the PGC-1alpha gene in human skeletal muscle. J Physiol. 2003; 546(Pt 3):851-858. Doi: 10.1113/jphysiol.2002.034850. (Link)
  688. Kang C, Ji LL. Role of PGC-1α signaling in skeletal muscle health and disease. Ann NY Acad Sci. 2012; 1271(1):110-117. Doi: 10.1111/j.1742-6632.2012.06738.x. (Link)
  689. Valle I, Álvarez-Barrientos A, Arza E, Lamas S, Monsalve M. PGC-1α regulates the mitochondrial antioxidant defense system in vascular endothelial cells. Cardiovascular Research. 2005; 66(3):562-573. Doi: 10.1016/j.cardiores.2005.01.026. (Link)
  690. St-Pierre J, Drori S, Uldry M, et al. Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell. 2006; 127(2):397-408. Doi: 10.1016/j.ceel.2006.09.024. (Link)
  691. Vainshtein A, Tryon LD, Pauly M, Hood DA. Role of PGC-1α during acute exercise-induced autophagy and mitophagy in skeletal muscle. Am J Physiol Cell Physiol. 2015; 308(9):C710-C719. Doi: 10.1152/ajpcell.00380.2014. (Link)
  692. Austin S, St-Pierre J. PGC1α and mitochondrial metabolism—emerging concepts and relevance in ageing and neurodegenerative disorders. J Cell Sci. 2012; 125(Pt 21):4963-4971. Doi: 10.1242/jcs.113662. (Link)
  693. Ranhotra HS. Long-term caloric restriction up-regulates PPAR gamma co-activator 1 alpha (PGC-1alpha) expression in mice. Indian J Biochem Biophys. 2010; 47(5):272-277. (Link)
  694. Goto S, Radák Z. Hormetic effects of reactive oxygen species by exercise: a view from animal studies for successful aging in human. Dose Response. 2010; 8(1):68-72. Doi: 10.2203/dose-response.09-044.Goto. (Link)
  695. Radák Z, Chung HY, Koltai E, Taylor AW, Goto S. Exercise, oxidative stress and hormesis. Ageing Res Rev. 2008; 7(1):34-42. Doi: 10.1016/j.arr.2007.04.004. (Link)
  696. Patel AV, Bernstein L, Deka A, et al. Leisure time spent sitting in relation to total mortality in a prospective cohort of US adults. Am J Epidemiol. 2010; 172(4):419-429. Doi: 10.1093/aje/kwq155. (Link)
  697. Nieman DC, Henson DA, Gusewitch G, et al. Physical activity and immune function in elderly women. Med Sci Sports Exerc. 1993; 25(7):823-831. Doi: 10.1249/00005768-199307000-00011. (Link)
  698. Lee DC, Pate RR, Lavie CJ, et al. Leisure-time running reduces all-cause and cardiovascular mortality risk. J Am Coll Cardiol. 2014; 64(5):472-481. Doi: 10.1016/j.jacc.2014.04.058. (Link)
  699. Gordon BR, McDowell CP, Hallgren M, et al. Association of efficacy of resistance exercise training with depressive symptoms: meta-analysis and meta-regression analysis of randomized clinical trials. JAMA Psychiatry. 2018; 75(6):566-576. Doi: 10.1001/jamapsychiatry.2018.0572. (Link)
  700. Lynch WJ, Peterson AB, Sanchez V, Abel J, Smith MA. Exercise as a novel treatment for drug addiction: a neurobiological and stage-dependent hypothesis. Neurosci Biobehav Rev. 2013; 37(8):1622-1644. Doi: 10.1016/j.neubiorev.2013.06.011. (Link)
  701. Den Heijer AE, Groen Y, Tucha L, et al. Sweat it out? The effects of physical exercise on cognition and behavior in children and adults with ADHD: a systematic literature review. J Neural Transm (Vienna). 2017; 124(Suppl 1):3-26. Doi: 10.1007/s00702-016-1593-7. (Link)
  702. Best JR. Effects of physical activity on children’s executive function: contributions of experimental research on aerobic exercise. Dev Rev. 2010; 30(4):331-551. Doi: 10.1016/j.dr.2010.08.001. (Link)
  703. Erickson KI, Voss MW, Prakash RS, et al. Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci USA. 2011; 108(7):3017-3022. Doi: 10.1073/pnas.1015950108. (Link)
  704. Schmolesky MT, Webb DL, Hansen RA. The effects of aerobic exercise intensity and duration on levels of brain-derived neurotrophic factor in healthy men. J Sports Sci Med. 2013; 12(3):502-511. (Link)
  705. Frasier CR, Moukdar F, Patel HD, et al. Redox-dependent increases in glutathione reductase and exercise preconditioning: role of NADPH oxidase and mitochondria. Cardiovasc Res. 2013; 98(1):47-55. Doi: 10.1093/cvr/cvt009. (Link)
  706. Jenkins RR, Friedland R, Howald H. The relationship of oxygen uptake to superoxide dismutase and catalase activity in human skeletal muscle. Int J Sports Med. 1984; 5(1):11-14. Doi: 10.1055/s-2008-1025872. (Link)
  707. Abdul-Ghani MA, DeFronzo RA. Pathogenesis of insulin resistance in skeletal muscle. J Biomed Biotechnol. 2010; 2010:476279. Doi: 10.1155/2010/476279. (Link)
  708. Zhang Y, Leung DY, Richers BN, et al. Vitamin D inhibits monocyte/macrophage proinflammatory cytokine production by targeting MAPK phosphatase-1. J Immunol. 2012; 188(5):2127-2135. Doi: 10.4049/jimmunol.1102412. (Link)
  709. Arastoo AA, Khojastehkia H, Rahimi Z, et al. Evaluation of serum 25-Hydroxy vitamin D levels in children with autism spectrum disorder. Ital J Pediatr. 2018; 44(1):150. Doi: 10.1186/s13052-018-0587-5. (Link)
  710. Feng J, Shan L, Du L, et al. Clinical improvement following vitamin D3 supplementation in autism spectrum disorder. Nutr Neurosci. 2017; 20(5):284-290. Doi: 10.1080/1028415X.2015.1123847. (Link)
  711. Bener A, Khattab AO, Al-Dabbagh MM. Is high prevalence of Vitamin D deficiency evidence for autism disorder?: In a highly endogamous population. J Pediatr Neurosci. 2014; 9(3):227-233. Doi: 10.4103/1817-1745.147574. (Link)
  712. Saad K, Abdel-Rahman AA, Elserogy YM, et al. Vitamin D status in autism spectrum disorders and the efficacy of vitamin D supplementation in autistic children. Nutr Neurosci. 2016; 19(8):346-351. Doi: 10.1179/1476830515Y.0000000019. (Link)
  713. Mark KA, Dumas KJ, Bhaumik D, et al. Vitamin D promotes protein homeostasis and longevity via the stress response pathway genes skn-1, ire-1, and xbp-1. Cell Rep. 2016; 17(5):1227-1237. Doi: 10.1016/j.celrep.2016.09.086. (Link)
  714. Kumar J, Muntner P, Kaskel FJ, Hailpern SM, Melamed ML. Prevalence and associations of 25-hydroxyvitamin D deficiency in US children: NHANES 2001-2004. Pediatrics. 2009; 124(3):e362-e370. Doi: 10.1542/peds.2009-0051. (Link)
  715. Lim HS, Roychoudhuri R, Peto J, et al. Cancer survival is dependent on season of diagnosis and sunlight exposure. Int J Cancer. 2006; 119(7):1530-1536. Doi: 10.1002/ijc.22052. (Link)
  716. Wacker M, Holick MF. Sunlight and vitamin D: a global perspective for health. Dermatoendocrinol. 2013; 5(1):51-108. Doi: 10.4161/derm.24494. (Link)
  717. McDonnell SL, Baggerly C, French CB, et al. Serum 25-hydroxyvitamin D concentrations ≥40 ng/ml are associated with >65% lower cancer risk: pooled analysis of randomized trial and prospective cohort study. PLoS One. 2016; 11(4):e0152441. Doi: 10.1371/journal.pone.0152441. (Link)
  718. Hebert KJ, Miller LL, Joinson CJ. Association of autistic spectrum disorder with season of birth and conception in a UK cohort. Autism Res. 2010; 3(4):185-190. Doi: 10.1002/aur.136. (Link)
  719. Cantorna MT, Yu S, Bruce D. The paradoxical effects of vitamin D on Type 1 mediated immunity. Mol Aspects Med. 2008; 29(6):369-375. Doi: 10.1016/j.mam.2008.04.004. (Link)
  720. Cantorna MT, Snyder L, Lin YD, Yang L. Vitamin D and 1,25(OH)2D regulation of T cells. Nutrients. 2015; 7(4):3011-3021. Doi: 10.3390/nu7043011. (Link)
  721. Sloka S, Silva C, Wang J, Yong VW. Predominance of Th2 polarization by vitamin D through a STAT6-dependent mechanism. J Neuroinflammation. 2011; 8:56. Doi: 10.1186/1742-2094-8-56. (Link)
  722. Waldron JL, Ashby HL, Cornes MP, et al. Vitamin D: a negative acute phase reactant. J Clin Pathol. 2013; 66(7):620-622. Doi: 10.1136/jclinpath-2012-201301. (Link)
  723. Simpson S Jr, Blizzard L, Otahal P, Van der Mei I, Taylor B. Latitude is significantly associated with the prevalence of multiple sclerosis: a meta-analysis. J Neuro Neurosurg Psychiatry. 2011; 82(10):1132-1141. Doi: 10.1136/jnnp.2011.240432. (Link)
  724. Sackey SS, Vowotor MK, Owusu A, et al. Spectroscopic study of UV transparency of some materials. Environment and Pollution. 2015; 4(4). Doi: 10.5539/ep.v4n4p1. (Link)
  725. Reddy P, Edwards LR. Magnesium supplementation in vitamin D deficiency. Am J Ther. 2019 26(1):e124-e132. Doi: 10.1097/MJT.0000000000000538. (Link)
  726. Seneff S, Lauritzen A, Davidson R, Lentz-Marino L. Is endothelial nitric oxide synthase a moonlighting protein whose day job is cholesterol sulfate synthesis? Implications for cholesterol transport, diabetes and cardiovascular disease. Entropy. 2012; 14(12):2492-2530. Doi: 10.3390/e14122492. (Link)
  727. Seneff S, Davidson R, Mascitelli L. Might cholesterol sulfate deficiency contribute to the development of autistic spectrum disorder? Med Hypotheses. 2012; 78(2):213-217. Doi: 10.1016/j.mehy.2011.10.026. (Link)
  728. Fang J, Wheaton AG, Ayala C. Sleep duration and history of stroke among U.S. adults. J Sleep Res. 2014; 23(5):531-537. Doi: 10.1111/jsr.12160. (Link)
  729. Peraita-Adrados MR. EEG, Polysomnography and other sleep recording systems. In: Parmeggiani PL, Velluti RA, ed. The Physiologic Nature of Sleep. Imperial College Press; 2005:103-122. (Link)
  730. Mindell JA, Telofski LS, Wiegand B, Kurtz ES. A nightly bedtime routine: impact on sleep in young children and maternal mood. Sleep. 2009; 32(5):599-606. Doi: 10.1093/sleep.32.5.599. (Link)
  731. Lunsford-Avery JR, Engelhard MM, Navar AM, Kollins SH. Validation of the sleep regularity index in older adults and associations with cardiometabolic risk. Sci Rep. 2018; 8(1):14158. Doi: 10.1038/s41598-018-32402-5. (Link)
  732. Reiter RJ, Mayo JC, Tan DX, et al. Melatonin as an antioxidant: under promises but over delivers. J Pineal Res. 2016; 61(3):253-278. Doi: 10.1111/jpi.12360. (Link)
  733. Li Y, Li S, Zhou Y, et al. Melatonin for the prevention and treatment of cancer. Oncotarget. 2017; 8(24):39896-39921. Doi: 10.18632/oncotarget.16379. (Link)
  734. Rossignol DA, Frye RE. Melatonin in autism spectrum disorders. Curr Clin Pharmacol. 2014; 9(4):326-334. Doi: 10.2174/15748847113086660072. (Link)
  735. Hurley S, Goldberg D, Nelson D, et al. Light at night and breast cancer risk among California teachers. Epidemiology. 2014; 25(5):697-706. Doi: 10.1097/EDE.0000000000000137. (Link)
  736. Flynn-Evans EE, Stevens RG, Tabandeh H, Schernhammer ES, Lockley SW. Total visual blindness is protective against breast cancer. Cancer Causes Control. 2009; 20(9):1753-1756. Doi: 10.1007/s10552-009-9405-0. (Link)
  737. Kang SG, Yoon HK, Cho CH, et al. Decrease in fMRI brain activation during working memory performed after sleeping under 10 lux light. Sci Rep. 2016; 6:36731. Doi: 10.1038/srep36731. (Link)
  738. Maydych V. The interplay between stress, inflammation, and emotional attention: relevance for depression. Front Neurosci. 2019; 13:384. Doi: 10.3389/fnins.2019.00384. (Link)
  739. Chiang JJ, Ko A, Bower JE, et al. Stress, psychological resources, and HPA and inflammatory reactivity during late adolescence. Dev Psychopathol. 2019; 31(2):699-712. Doi: 10.1017/S0954579418000287. (Link
  740. Rohleder N. Stimulation of systemic low-grade inflammation by psychosocial stress. Psychosom Med. 2014; 76(3):181-189. Doi: 10.1097/PSY.0000000000000049. (Link)
  741. Kinney DK, Munir KM, Crowley DJ, Miller AM. Prenatal stress and risk for autism. Neurosci Biobehav Rev. 2008; 32(8):1519-1532. Doi: 10.1016/j.neubiorev.2008.06.004. (Link)
  742. Kinney DK, Miller AM, Crowley DJ, Huang E, Gerber E. Autism prevalence following prenatal exposure to hurricanes and tropical storms in Louisiana. J Autism Dev Disord. 2008; 38(3):481-488. Doi: 10.1007/s10803-007-0414-0. (Link)
  743. Ward AJ. A comparison and analysis of the presence of family problems during pregnancy of mothers of “autistic” children and mothers of normal children. Child Psychiatry Hum Dev. 1990; 20(4):279-288. Doi: 10.1007/bf00706020. (Link)
  744. Assaf AM, Al-Abbassi R, Al-Binni M. Academic stress-induced changes in Th1- and Th2-cytokine response. Saudi Pharm J. 2017; 25(8):1237-1247. Doi: 10.1016/j.jsps.2017.09.009. (Link)
  745. Martino M, Rocchi G, Escelsior A, Fornaro M. Immunomodulation mechanism of antidepressants: interactions between serotonin/norepinephrine balance and Th1/Th2 balance. Curr Neuropharmacol. 2012; 10(2):97-123. Doi: 10.2174/157015912800604542. (Link)
  746. Corbett BA, Mendoza S, Abdullah M, Wegelin JA, Levine S. Cortisol circadian rhythms and response to stress in children with autism. Psychoneuroendrocrinology. 2006; 31(1):59-68. Doi: 10.1016/j.psyneuen.2005.05.011. (Link)
  747. Fuld S. Autism spectrum disorder: the impact of stressful and traumatic life events and implications for clinical practice. Clin Soc Work J. 2018; 46(3):210-219. Doi: 10.1007/s10615-018-0649-6. (Link)
  748. Buchman AL. Side effects of corticosteroid therapy. J Clin Gastroenterol. 2011; 33(4):289-294. Doi: 10.1097/00004836-200110000-00006. (Link)
  749. Barnes J. Corticosteroid resistance in patients with asthma and chronic obstructive pulmonary disease. J Allergy Clin Immunol. 2013; 131(3):636-645. Doi: 10.1016/j.jaci.2012.12.1564. (Link)
  750. Cohen S, Janicki-Deverts D, Doyle WJ, et al. Chronic stress, glucocorticoid receptor resistance, inflammation, and disease risk. PNAS. 2012; 109(16):5995-5999. Doi: 10.1073/pnas.1118355109. (Link)
  751. Griffiths RR, Johnson MW, Carducci MA. Psilocybin produces substantial and sustained decreases in depression and anxiety in patients with life-threatening cancer: a randomized double-blind trial. J Psychopharmacol. 2016; 30(12):1181-1197. Doi: 10.1177/0269881116675513. (Link)
  752. Chevalier G, Sinatra ST, Oschman JL, Sokal K, Sokal P. Earthing: health implications of reconnecting the human body to the earth’s surface electrons. J Environ Public Health. 2012; 2012:291541. Doi: 10.1155/2012/291541. (Link)
  753. Ghaly M, Teplitz D. The biologic effect of grounding the human body during sleep as measured by cortisol levels and subjective reporting of sleep, pain, and stress. J Altern Complement Med. 2004; 10(5):767-776. Doi: 10.1089/acm.2004.10.767. (Link)
  754. Sokal K, Sokal P. Earthing the human body influences physiologic processes. J Altern Complement Med. 2011; 17(4):301-308. Doi: 10.1089/acm.2010.0687. (Link)
  755. Oschman JL. Charge transfer in the living matrix. J Bodyw Mov Ther. 2009; 13(3):215-228. Doi: 10.1016/j.jbmt.2008.06.005. (Link)
  756. Bengston WF, Krinsley D. The effect of the “Laying On of Hands” on transplanted breast cancer in mice. Journal of Scientific Exploration. 2000; 14(3):353-364. (Link)
  757. Pohl G, Seemann H, Zojer N, et al. “Laying on of hands” improves well-being in patients with advanced cancer. Support Care Cancer. 2007; 15(2):143-151. Doi: 10.1007/s00520-006-0147-1. (Link)
  758. Baldwin AL, Vitale A, Brownell E, Kryak E, Rand W. Effects of reiki on pain, anxiety, and blood pressure in patients undergoing knee replacement: a pilot study. Holist Nurs Pract. 2017; 31(2):80-89. Doi: 10.1097/HNP.0000000000000195. (Link)
  759. Creswell JD, Taren AA, Lindsay EK, et al. Alterations in resting-state functional connectivity link mindfulness meditation with reduced interleukin-6: a randomized controlled trial. Biol Psychiatry. 2016; 80(1):53-61. Doi: 10.1016/j.biopsych.2016.01.008. (Link)
  760. Rosenkranz MA, Davidson RJ, MacCoon DG, et al. A comparison of mindfulness-based stress reduction and an active control in modulation of neurogenic inflammation. Brain Behav Immun. 2013; 27:174-184. Doi: 10.1016/j.bbi.2012.10.013. (Link)
  761. Kaliman P, Alvarez-López MJ, Cosín-Tomás M, et al. Rapid changes in histone deacetylases and inflammatory gene expression in expert meditators. Psychoneuroendocrinology. 2014; 40:96-107. Doi: 10.1016/j.psyneuen.2013.11.004. (Link)
  762. Murdock KW, LeRoy AS, Lacourt TE, et al. Executive functioning and diabetes: the role of anxious arousal and inflammation. Psychoneuroendocrinology. 2016; 71:102-109. Doi: 10.1016/j.psyneuen.2016.05.006. (Link)
  763. Oman D, Shapiro SL, Thoresen CE, Plante TG, Flinders T. Meditation lowers stress and supports forgiveness among college students: a randomized controlled trial. J Amer College Health. 2008; 56(5):569-578. Doi: 10.3200/JACH.56.5.569-578. (Link)
  764. Astin JA. Stress reduction through mindfulness meditation. Effects on psychological symptomatology, sense of control, and spiritual experiences. Psychother Psychosom. 1997; 66(2):97-106. Doi: 10.1159/000289116. (Link)
  765. Rosenkranz MA, Lutz A, Perlman DM, et al. Reduced stress and inflammatory responsiveness in experienced meditators compared to a matched healthy control group. Psychoneuroendocrinology. 2016; 68:117-125. Doi: 10.1016/j.psyneuen.2016.02.013. (Link)
  766. Abelson JL, Erickson TM, Mayer SE, et al. Brief cognitive intervention can modulate neuroendocrine stress responses to the Trier Social Stress Test: buffering effects of a compassionate goal orientation. Psychoneuroendocrinology. 2014; 44:60-70. Doi: 10.1016/j.psyneuen.2014.02.016. (Link)
  767. Condon P, Desbordes G, Miller WB, DeSteno D. Meditation increases compassionate responses to suffering. Psychol Sci. 2013; 24(10):2125-2127. Doi: 10.1177/0956797613485603. (Link)
  768. Lim SA, Cheong KJ. Regular yoga practice improves antioxidant status, immune function, and stress hormone releases in young healthy people: a randomized, double-blind, controlled pilot study. J Altern Complement Med. 2015; 21(9):530-538. Doi: 10.1089/acm.2014.0044. (Link)
  769. Pal R, Singh SN, Halder K, et al. Effects of yogic practice on metabolism and antioxidant-redox status of physically active males. J Phys Act Health. 2015; 12(4):579-587. Doi: 10.1123/jpah.2013-0059. (Link)
  770. Sinha S, Singh SN, Monga YP, Ray US. Improvement of glutathione and total antioxidant status with yoga. J Altern Complement Med. 2007; 13(10):1085-1090. Doi: 10.1089/acm.2007.0567. (Link)
  771. Thirthalli J, Naveen GH, Rao MG, et al. Cortisol and antidepressant effects of yoga. Indian J Psychiatry. 2013; 55(Suppl 3):S405-S408. Doi: 10.4103/0019-5545.116315. (Link)
  772. Naik D, Thomas N. Yoga- a potential solution for diabetes & metabolic syndrome. Indian J Med Res. 2015; 141(6):753-756. Doi: 10.4103/0971-5916.160689. (Link)
  773. Twal WO, Wahlquist AE, Balasubramanian S. Yogic breathing when compared to attention control reduces the levels of pro-inflammatory biomarkers in saliva: a pilot randomized controlled trial. BMC Complem Altern Med. 2016; 16:294. Doi: 10.1186/s12906-016-1286-7. (Link)
  774. Rossignol DA, Rossignol LW, Smith S, et al. Hyperbaric treatment for children with autism: a multicenter, randomized, double-blind, controlled trial. BMC Pediatr. 2009; 9(1):21. Doi: 10.1186/1471-2431-9-21. (Link)
  775. Rossignol DA, Rossignol LW. Hyperbaric oxygen therapy may improve symptoms in autistic children. Med Hypotheses. 2006; 67(2):216-228. Doi: 10.1016/j.mehy.2006.02.009. (Link)
  776. Li J, Liu W, Ding S, et al. Hyperbaric oxygen preconditioning induces tolerance against brain ischemia-reperfusion injury by upregulation of antioxidant enzymes in rats. Brain Res. 2008; 1210:223-229. Doi: 10.1016/j.brainsres.2008.03.007. (Link)
  777. Eltzschig HK, Carmeliet P. Hypoxia and inflammation. N Engl J Med. 2011; 364(7):656-665. Doi: 10.1056/NEJMra0910283. (Link)
  778. Wasdell MB, Jan JE, Bomben MM, et al. A randomized, placebo-controlled trial of controlled release melatonin treatment of delayed sleep phase syndrome and impaired sleep maintenance in children with neurodevelopmental disabilities. J Pineal Res. 2008; 44(1):57-64. Doi: 10.1111/j.1600-079X.2007.00528.x. (Link)
  779. Rossignol DA. Hyperbaric oxygen therapy might improve certain pathophysiological findings in autism. Medical Hypotheses. 2007; 68(6):1208-1227. Doi: 10.1016/j.mehy.2006.09.064. (Link)
  780. Gordon I, Vander Wyk BC, Bennett RH, et al. Oxytocin enhances brain function in children with autism. Proc Natl Acad Sci U S A. 2013; 110(52):20953-20958. Doi: 10.1073/pnas.1312857110. (Link)
  781. Andari E, Duhamel JR, Zalla T, et al. Promoting social behavior with oxytocin in high-functioning autism spectrum disorders. PNAS. 2010; 107(9):4389-4394. Doi: 10.1073/pnas.0910249107. (Link)
  782. Clodi M, Vila G, Geyeregger R, et al. Oxytocin alleviates the neuroendocrine and cytokine response to bacterial endotoxin in healthy men. Am J Physiol – Endocrinol and Metab. 2008; 295(3):E686-E691. Doi: 10.1152/ajpendo.90263.2008. (Link)
  783. Guo S, Wharton W, Moseley P, Shi H. Heat shock protein 70 regulates cellular redox status by modulating glutathione-related enzyme activities. Cell Stress Chaperones. 2007; 12(3):245-254. Doi: 10.1379/csc-265.1. (Link)
  784. Laukkanen T, Khan H, Zaccardi F, Laukkanen JA. Association between sauna bathing and fatal cardiovascular and all-cause mortality events. JAMA Intern Med. 2015; 175(4):542-548. Doi: 10.1001/jamaintermed.2014.8187. (Link)
  785. Laukkanen T, Kunutsor S, Kauhanen J, Laukkanen JA. Sauna bathing is inversely associated with dementia and Alzheimer’s disease in middle-aged Finnish men. Age and Ageing. 2017; 46(2):245-249. Doi: 10.1093/ageing/afw212. (Link)
  786. Ryan M, Levy MM. Clinical review: fever in intensive care unit patients. Crit Care. 2003; 7(3):221-225. Doi: 10.1186/cc1879. (Link)
  787. Curran LK, Newschaffer CJ, Lee LC, et al. Behaviors associated with fever in children with autism spectrum disorders. Pediatrics. 2007; 120(6):e1386-e1392. Doi: 10.1542/peds.2007-0360. (Link)
  788. Rokutan K, Hirakawa T, Teshima S, Honda S, Kishi K. Glutathione depletion impairs transcriptional activation of heat shock genes in primary cultures of guinea pig gastric mucosal cells. J Clin Invest. 1996; 97(10):2242-2250. Doi: 10.1172/JCI118665. (Link)
  789. Liang H, Ward WF. PGC-1alpha: a key regulator of energy metabolism. Adv Physiol Educ. 2006; 30(4):145-151. Doi: 10.1152/advan.00052.2006. (Link)
  790. Mooventhan A, Nivethitha L. Scientific evidence-based effects of hydrotherapy on various systems of the body. N Am J Med Sci. 2014; 6(5):199-209. Doi: 10.4103/1947-2714.132935. (Link)
  791. Solianik R, Skurvydas A, Vitkauskienė A, Brazaitis M. Gender-specific cold responses induce a similar body-cooling rate but different neuroendocrine and immune responses. Cryobiology. 2014; 69(1):26-33. Doi: 10.1016/j.cryobiol.2014.04.015. (Link)
  792. Heppner FL, Ransohoff RM, Becher B. Immune attack: the role of inflammation in Alzheimer disease. Nat Rev Neurosci. 2015; 16(6):358-372. Doi: 10.1038/nrn3880. (Link)
  793. Lim GP, Yang F, Chu T, et al. Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer’s disease. J Neurosci. 2000; 20(15):5709-5714. Doi: 10.1523/JNEUROSCI.20-15-05709.2000. (Link)
  794. Halliday G, Robinson SR, Shepherd C, Kril J. Alzheimer’s disease and inflammation: a review of cellular and therapeutic mechanisms. Clin Exp Pharmacol Physiol. 2000; 27(1-2):1-8. Doi: 10.1046/j.1440-1681.2000.03200.x. (Link)
  795. Blasko I, Grubeck-Loebenstein B. Role of the immune system in the pathogenesis, prevention and treatment of Alzheimer’s disease. Drugs Aging. 2003; 20(2):101-113. Doi: 10.2165/00002512-200320020-00002. (Link)
  796. Olmos-Alonso A, Schetters ST, Sri S, et al. Pharmacological targeting of CSF1R inhibits microglial proliferation and prevents the progression of Alzheimer’s-like pathology. Brain. 2016; 139(3):891-907. Doi: 10.1093/brain/awv379. (Link)
  797. de la Monte SM, Tong M. Brain metabolic dysfunction at the core of Alzheimer’s disease. Biochem Pharmacol. 2014; 88(4):548-559. Doi: 10.1016/j.bcp.2013.12.012. (Link)
  798. Chen Z, Zhong C. Decoding Alzheimer’s disease from perturbed cerebral glucose metabolism: implications for diagnostic and therapeutic strategies. Prog Neurobiol. 2013; 108:21-43. Doi: 10.1016/j.pneurobio.2013.06.004. (Link)
  799. Roberts RO, Roberts LA, Geda YE, et al. Relative intake of macronutrients impacts risk of mild cognitive impairment or dementia. J Alzheimers Dis. 2012; 32(2):329-339. Doi: 10.3233/JAD-2012-120862. (Link)
  800. de la Monte SM, Wands JR. Alzheimer’s Disease is type 3 diabetes—Evidence reviewed. J Diabetes Sci Technol. 2008; 2(6):1101-1113. Doi: 10.1177/193229680800200619. (Link)
  801. Silzer TK, Phillips NR. Etiology of type 2 diabetes and Alzheimer’s disease: exploring the mitochondria. Mitochondrion. 2018; 43:16-24. Doi: 10.1016/j.mito.2018.04.004. (Link)
  802. Taylor MK, Sullivan DK, Mahnken JD, Burns JM, Swerdlow RH. Feasibility and efficacy data from a ketogenic diet intervention in Alzheimer’s disease. Alzheimer’s Dement (N Y). 2017; 4:28-36. Doi: 10.1016/j.trci.2017.11.002. (Link)
  803. Morris MC, Tangney CC, Wang Y, et al. MIND diet associated with reduced incidence of Alzheimer’s disease. Alzheimers Dement. 2015; 11(9):1007-1014. Doi: 10.1016/j.jalz.2014.11.009. (Link)
  804. Hu P, Qin YH, Jing CX, et al. Does the geographical gradient of ApoE4 allele exist in China? A systemic comparison among multiple Chinese populations. Mol Biol Rep. 2011; 38(1):489-494. Doi: 10.1007/s11033-010-0132-0. (Link)
  805. Abondio P, Sazzini M, Garagnani P, et al. The genetic variability of APOE in different human populations and its implications for longevity. Genes (Basel). 2019; 10(3):222. Doi: 10.3390/genes10030222. (Link)
  806. Roe CM, Behrens MI, Xiong C, Miller JP, Morris JC. Alzheimer disease and cancer. Neurology. 2005; 64(5):895-898. Doi: 10.1212/01.WNL.0000152889.94785.51. (Link)
  807. Wilson Rs, Mendes De Leon CF, Barnes LL, et al. Participation in cognitively stimulating activities and risk of incident Alzheimer disease. JAMA. 2002; 287(6):742-748. Doi: 10.1001/jama.287.6.742. (Link)
  808. Iaccarino HF, Singer AC, Martorell AJ, et al. Gamma frequency entrainment attenuates amyloid load and modifies microglia. Nature. 2016; 540(7632):230-235. Doi: 10.1038/nature20587. (Link)
  809. Serra JA, Domínguez RO, de Lustig ES, et al. Parkinson’s disease is associated with oxidative stress: comparisons of peripheral antioxidant profiles in living Parkinson’s, Alzheimer’s and vascular dementia patients. J Neural Transm (Vienna). 2001; 108(10):1135-1148. Doi: 10.1007/s007020170003. (Link)
  810. Nagatsu T, Sawada M. Inflammatory process in Parkinson’s disease: role for cytokines. Curr Pharm Des. 2005; 11(8):999-1016. Doi: 10.2174/1381612053381620. (Link)
  811. Reeve AK, Ludtmann MH, Angelova PR, et al. Aggregated α-synuclein and complex I deficiency: exploration of their relationship in differentiated neurons. Cell Death Dis. 2015; 6(7):e1820. Doi: 10.1038/cddis.2015.166. (Link)
  812. Che Y, Hou L, Sun F, et al. Taurine protects dopaminergic neurons in a mouse Parkinson’s disease model through inhibition of microglial M1 polarization. Cell Death Dis. 2018; 9(4):435. Doi: 10.1038/s41419-018-0468-2. (Link)
  813. Flores-Martinez YM, Fernandez-Parrilla MA, Ayala-Davila J, et al. Acute neuroinflammatory response in the substantia nigra pars compacta of rats after a local injection of lipopolysaccharide. J Immunol Res. 2018; 2018:1838921. Doi: 10.1155/2018/1838921. (Link)
  814. ter Horst KW, Lammers NM, Trinko R, et al. Striatal dopamine regulates systemic glucose metabolism in humans and mice. Sci Transl Med. 2018; 10(442):eaar3752. Doi: 10.1126/scitranslmed.aar3752. (Link)
  815. Hu G, Jousilahti P, Bidel S, Antikainen R, Tuomilehto J. Type 2 diabetes and the risk of Parkinson’s disease. Diabetes Care. 2007; 30(4):842-847. Doi: 10.2337/dc06-2011. (Link)
  816. de Pablo-Fernandez E, Goldacre R, Pakpoor J, Noyce AJ, Warner TT. Association between diabetes and subsequent Parkinson disease: a record-linkage cohort study. Neurology. 2018; 91(2):e139-e142. Doi: 10.1212/WNL.0000000000005771. (Link)
  817. Xu Q, Park Y, Huang X, et al. Diabetes and risk of Parkinson’s Disease. Diabetes Care. 2011; 34(4):910-915. Doi: 10.2337/dc10-1922. (Link)
  818. Caneo C, Marston L, Bellón JA, King M. Examining the relationship between physical illness and depression: Is there a difference between inflammatory and non inflammatory diseases? A cohort study. Gen Hosp Psychiatry. 2016; 43:71-77. Doi: 10.1016/j.genhosppsych.2016.09.007. (Link)
  819. Berk M, Williams LJ, Jacka FN, et al. So depression is an inflammatory disease, but where does the inflammation come from? BMC Med. 2013; 11:200. Doi: 10.1186/1741-7015-11-200. (Link)
  820. Lucas M, Chocano-Bedoya P, Schulze MB, et al. Inflammatory dietary pattern and risk of depression among women. Brain Behav Immun. 2014; 36:46-53. Doi: 10.1016/j.bbi.2013.09.014. (Link)
  821. Tynan RJ, Weidenhofer J, Hinwood M, et al. A comparative examination of the anti-inflammatory effects of SSRI and SNRI antidepressants on LPS stimulated microglia. Brain Behav Immun. 2012; 26(3):469-479. Doi: 10.1016/j.bbi.2011.12.011. (Link)
  822. Muneer A. Bipolar disorder: role of inflammation and the development of disease biomarkers. Psychiatry Investig. 2016; 13(1):18-33. Doi: 10.4306/pi.2016.13.1.18. (Link)
  823. Steckert AV, Valvassori SS, Moretti M, Dal-Pizzol F, Quevedo J. Role of oxidative stress in the pathophysiology of bipolar disorder. Neurochem Res. 2010; 35(9):1295-1301. Doi: 10.1007/s11064-010-0195-2. (Link)
  824. Frey BN, Andreazza AC, Kunz M, et al. Increased oxidative stress and DNA damage in bipolar disorder: a twin-case report. Prog Neuropsychopharmacol Biol Psychiatry. 2007; 31(1):283-285. Doi: 10.1016/j.pnpbp.2006.06.011. (Link)
  825. Fernandes BS, Steiner J, Molendijk ML, et al. C-reactive protein concentrations across the mood spectrum in bipolar disorder: a systemic review and meta-analysis. Lancet Psychiatry. 2016; 3(12):1147-1156. Doi: 10.1016/S2215-0366(16)30370-4. (Link)
  826. Barbosa IG, Machado-Vieira R, Soares JC, Teixeira AL. The immunology of bipolar disorder. Neuroimmunomodulation. 2014; 21(2-3):117-122. Doi: 10.1159/000356539. (Link)
  827. Rosenblat JD, McIntyre RS. Bipolar disorder and immune dysfunction: epidemiological findings, proposed pathophysiology and clinical implications. Brain Sci. 2017; 7(11):144. Doi: 10.3390/brainsci7110144. (Link)
  828. Berk M, Kapczinski F, Andreazza AC, et al. Pathways underlying neuroprogression in bipolar disorder: focus on inflammation, oxidative stress and neurotrophic factors. Neurosci Biobehav Rev. 2011; 35(3):804-817. Doi: 10.1016/j.neubiorev.2010.10.001. (Link)
  829. Vogelzangs N, Beekman ATF, de Jonge P, Pennix BWJH. Anxiety disorders and inflammation in a large adult cohort. Transl Psychiatry. 2013; 3(4):e249. Doi: 10.1038/tp.2013.27. (Link)
  830. Khandaker GM, Zammit S, Lewis G, Jones PB. Association between serum C-reactive protein and DSM-IV generalized anxiety disorder in adolescence: Findings from the ALSPAC cohort. Neurobiol Stress. 2016; 4:55-61. Doi: 10.1016/j.ynstr.2016.02.003. (Link)
  831. Hou R, Garner M, Holmes C, et al. Peripheral inflammatory cytokines and immune balance in Generalized Anxiety Disorder: case-controlled study. Brain Behav Immun. 2017; 62:212-218. Doi: 10.1016/j.bbi.2017.01.021. (Link)
  832. Vogelzangs N, de Jonge P, Smit JH, Bahn S, Penninx BW. Cytokine production capacity in depression and anxiety. Transl Psychiatry. 2016; 6(5):e825. Doi: 10.1038/tp.2016.92. (Link)
  833. Hoge EA, Brandstetter K, Moshier S, et al. Broad spectrum of cytokine abnormalities in panic disorder and posttraumatic stress disorder. Depress Anxiety. 2009; 26(5):447-455. Doi: 10.1002/da.20564. (Link)
  834. Reichenberg A, Yirmiya R, Schuld A, et al. Cytokine-associated emotional and cognitive disturbances in humans. Arch Gen Psychiatry. 2001; 58(5):445-452. Doi: 10.1001/archpsyc.58.5.445. (Link)
  835. Hassan W, Silva CE, Mohammadzai IU, Rocha JBT, Landeira-Fernandez J. Association of oxidative stress to the genesis of anxiety: implications for possible therapeutic interventions. Curr Neuropharmacol. 2014; 12(2):120-139. Doi: 10.2174/1570159X11666131120232135. (Link)
  836. Kiecolt-Glaser JK, Belury MA, Andridge R, Malarkey WB, Glaser R. Omega-3 supplementation lowers inflammation and anxiety in medical students: a randomized controlled trial. Brain Behav Immun. 2011; 25(8):1725-1734. Doi: 10.1016/j.bbi.2011.07.229. (Link)
  837. Miller AL. The methylation, neurotransmitter, and antioxidant connections between folate and depression. Altern Med Rev. 2008; 13(3):216-226. (Link)
  838. Deonna T, Roulet E. Autistic spectrum disorder: evaluating a possible contributing or causal role of epilepsy. Epilepsia. 2006; 47 Suppl 2:79-82. 10.1111/j.1528-1167.2006.00697.x. (Link)
  839. Hughes JR, Melyn M. EEG and seizures in autistic children and adolescents: further findings and therapeutic implications. Clin EEG Neurosci. 2005; 36(1):15-20. Doi: 10.1177/155005940503600105. (Link)
  840. Giovanardi Rossi P, Posar A, Parmeggiani A. Epilepsy in adolescents and young adults with autistic disorder. Brain Dev. 2000; 22(2):102-106. Doi: 10.1016/S0387-7604(99)00124-2. (Link)
  841. Wahlstrom D, Collins P, White T, Luciana M. Developmental changes in dopamine neurotransmission in adolescence: behavioral implications and issues in assessment. Brain Cogn. 2010; 72(1):146. Doi: 10.1016/j.bandc.2009.10.013. (Link)
  842. Bozzi Y, Borrelli E. The role of dopamine signaling in epileptogenesis. Front Cell Neurosci. 2013; 7:157. Doi: 10.3389/fncel.2013.00157. (Link)
  843. Barone P, Palma V, de Bartolomeis A, Cicarelli G, Campanella G. Dopaminergic regulation of epileptic activity. Neurochem Int. 1992; 20 Suppl:245S-249S. Doi: 10.1016/0197-0186(92)90246-n. (Link)
  844. Vezzani A, French J, Bartfai T, Baram TZ. The role of inflammation in epilepsy. Nat Rev Neurol. 2011; 7(1):31-40. Doi: 10.1038/nrneurol.2010.178. (Link)
  845. Choi J, Koh S. Role of brain inflammation in epileptogenesis. Yonsei Med J. 2008; 49(1):1-18. Doi: 10.3349/ymj.2008.49.1.1. (Link)
  846. Rana A, Musto AE. The role of inflammation in the development of epilepsy. J Neuroinflammation. 2018; 15: 144. Doi: 10.1186/s12974-018-1192-7. (Link)
  847. Meldrum BS. The role of glutamate in epilepsy and other CNS disorders. Neurology. 1994; 44(11 Suppl 8):S14-S23. (Link)
  848. Changes in the population of persons with autism and pervasive developmental disorders in California’s Developmental Services System: 1987 through 1998. Department of Developmental Services. California Health and Human Services Agency. A Report to the Legislature March 1, 1999. (Link)
  849. National Air Pollution Surveillance Program. Government of Canada website.  https://www.canada.ca/en/environment-climate-change/services/air-pollution/monitoring-networks-data/national-air-pollution-program.html. Updated July 16, 2019. Accessed August 20, 2019. (Link)
  850. Davis DR. Declining fruit and vegetable nutrient composition: what is the evidence? HortScience. 2009; 44(1):15-19. Doi: 10.21273/HORTSCI.44.1.15. (Link)
  851. Gems D, Partridge L. Stress-response hormesis and aging: “that which does not kill us makes us stronger”. Cell Metab. 2008; 7(3):200-203. Doi: 10.1016/j.cmet.2008.01. (Link)